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Abstract—Shannon theoretic multi-user capacity problems are
traditionally formulated under the assumption that all decoding
nodes possess all codebooks. However, for certain networks such
as cognitive ones, this may be an unrealistic assumption. We
work towards understanding the impact of lack of codebook
knowledge at some decoding nodes in the network. We do so
by considering a two-user interference channel in which one
of the receivers has no information about the codebook of
the interfering transmitter, while the other receiver has both
codebooks. We derive a novel outer bound for the special
class of injective semi-deterministic interference channels which
incorporates this codebook knowledge explicitly. For the linear
deterministic channel, which models the Gaussian channel at
high SNR, we demonstrate the surprising fact that non i.i.d.
Bernoulli(1/2) points achieve points on the outer bound not
achievable by Bernoulli(1/2) inputs. We then show that this is
achievable to within a constant gap by a modified Han-Kobayashi
scheme. We characterize the capacity region of the Gaussian noise
channel to within 1/2 bit, even though we could not determine
the set of optimal input distributions. Numerical evaluations
suggest that if the non-oblivious transmitter uses a discrete input
a larger sum-rate is achievable compared to the case where both
users employ Gaussian codebooks or use time division in strong
interference regime at high SNR.

I. INTRODUCTION

While most multi-user information theoretic capacity results
assume that all decoding nodes are aware of the codebooks
of all transmitting nodes, this may not be practically relevant
in certain networks. For example, in large wireless networks,
it may be impractical to share all codebooks. In cognitive
networks, primary nodes may be oblivious to overlain cog-
nitive nodes. In networks in which nodes join and leave over
time, it may be unrealistic to assume that all existing users
would learn the codebook of a new user, and vice-versa. Such
networks motivate the study of networks where users have
partial codebook knowledge, by which we mean that any node
in the network knows only a subset of all codebooks (and not
actually portions of codebooks).

Past Work. To the best of our knowledge, networks with
partial codebook information were first introduced in [1],
where partial codebook information was modeled by lack of
knowledge of the index of a random encoding function that
maps messages to codewords at some decoding nodes. In [2],
[3] partial codebook knowledge was similarly modeled at the
so-called oblivious relays (i.e., relay nodes that lack codebook
knowledge). We will use a similar model here. The authors
in [2], [3] derived multi-letter capacity expressions which
are generally not computable. In particular, the optimal input

distribution for the practically relevant Gaussian noise channel
remains unknown, see [2, Section III.A] and [3, Remark 5].

Contribution and Paper Outline. We focus on a two-
user interference channel where one receiver knows both
codebooks, while the other only knows one. This differs from
[2], where capacity results were shown for the case where both
receivers are oblivious. Our main contributions, after formally
introducing the channel model in Section II, are:

1) the derivation of a novel outer bound which incorporates
this partial codebook knowledge explicitly (Section III);

2) capacity to within a constant gap for the injective semi-
deterministic interference channel (Section IV);

3) for the Linear Deterministic Interference Channel (LD-
IC), which models the Gaussian noise channel at high
SNR, we demonstrate examples of sum-rate optimal
input distributions (Section V). Surprisingly, the sum-
capacity achieving distributions are no longer i.i.d.
Bernoulli(1/2) (as it is usually the case for the LD-
IC), even though they achieve the same sum-capacity
as uniform i.i.d. Bernoulli(1/2) distributions in the IC
with full codebook knowledge. This might suggest that
there is no loss of optimality in lack of codebook
knowledge as long as the oblivious receiver can remove
the interfering signal, regardless of whether or not it can
decode the message carried by the interference.

4) we show capacity to with 1/2 bit for the real-valued
Gaussian noise channel, even though we could not
determine the set of optimal input distributions (Section
V). Interestingly, inspired by the LD-IC, if the non-
oblivious transmitter uses a discrete input we numeri-
cally show that a larger sum-capacity is attainable in
strong interference than by selecting Gaussian inputs,
using time-division, or treating interference as noise, at
high SNR. Here the oblivious receiver cannot decode
the interfering message but can do soft-estimation of
the interfering codeword symbols.

Notation. Lower case variables are instances of upper case
random variables which take values in calligraphic alphabets.
We let �(·) denote the Dirac delta function. The vector xn

:=

(x
1

, x
2

, · · · xn). The cardinality of a set A is denoted by |A|.

II. CHANNEL MODEL

General Memoryless Model. We consider the Inter-
ference Channel with an Oblivious Receiver (IC-OR). It
consists of the two-user memoryless interference channel
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Fig. 1. An Interference Channel with an Oblivious Receiver (IC-OR). F1
and F2 represent codebook indices known to one or both receivers.

(X
1

, X
2

, PY1Y2|X1X2
, Y

1

, Y
2

) where receiver 2 is oblivious of
the transmitter 1’s codebook. We model this lack of code-
book knowledge as in [1], where transmitters use randomized
encoding function, which are indexed by a message index
and a “codebook index” (F

1

and F
2

in Fig. 1). An oblivious
receiver is unaware of the “codebook index” (F

1

is not given
to decoder 2 in Fig. 1). The basic modeling assumption is
that without the knowledge of the codebook index a codeword
looks unstructured. More formally, by extending [2, Definition
2], a (2nR1 , 2nR2 , n) code for the IC-OR with enabled time
sharing is a six-tuple (PF1|Qn , �n

1

, �n
1

, PF2|Qn , �n
2

, �n
2

), where
the distribution PFi|Qn , i 2 {1, 2}, is over a finite alphabet
Fi conditioned on the time-sharing sequences qn from some
finite alphabet Q, and where the encoders �n

i and the decoders
�n

i , i 2 {1, 2}, are mappings

�n
1

: [1 : 2

nR1
] ⇥ [1 : |F

1

|] ! X n
1

,

�n
2

: [1 : 2

nR2
] ⇥ [1 : |F

2

|] ! X n
2

,

�n
1

: [1 : |F
1

|] ⇥ [1 : |F
2

|] ⇥ Yn
1

! [1 : 2

nR1
],

�n
2

: [1 : |F
2

|] ⇥ Yn
2

! [1 : 2

nR2
].

Moreover, when user 1’s codebook index is unknown at
decoder 2, the encoder �n

1

and distribution PF1|Qn must satisfy

2

nR1X

w1=1

|F1|X

f1=1

PF1|Qn
(f

1

|qn
) 2

�nR1 �
�
xn

1

� �n
1

(w
1

, f
1

)

�

=: P[Xn
1

= xn
1

|Qn
= qn

] =

Y

t2[1:n]

PX1|Q(xit|qt), (1)

according to some distribution PX1|Q. In other words, when
averaged over the probability of selecting a given codebook
and over a uniform distribution on the message set, the trans-
mitted codeword conditioned on any time sharing sequence
has a product distribution. Besides the restriction in (1) on
the allowed class of codes, the probability of error, achievable
rates and capacity region are defined in the usual way [4].

Injective Semi-Deterministic Memoryless Model. For
a general memoryless IC, no restrictions are imposed on
the transition probability PY1Y2|X1X2

. The injective semi-
deterministic interference channel (ISD-IC) is a special inter-

ference channel with transition probability

PY1Y2|X1X2
(y

1

, y
2

|x
1

, x
2

) =

X

t1,t2

PT1|X1
(t

1

|x
1

)PT2|X2
(t

2

|x
2

)

· �
�
y
1

� f
1

(x
1

, t
2

)

�
�
�
y
2

� f
2

(x
2

, t
1

)

�
,

for some memoryless transition probabilities PT1|X1
and

PT2|X2
, and some deterministic functions f

1

and f
2

that are
injective when their first argument is held fixed [5], that is, for
all PX1X2 = PX1PX2 one has H(Y

1

|X
1

) = H(T
2

|X
1

) and
H(Y

2

|X
2

) = H(T
1

|X
2

), see [5, Fig. 1].

III. OUTER BOUND FOR THE INJECTIVE
SEMI-DETERMINISTIC INTERFERENCE CHANNEL

We now present a new outer bound for the ISD-IC-OR.
We begin by proving a property of the output distribu-
tions that is key to the converse, i.e., that the distribution
PY n

2 |Xn
2 ,F2

(Y n
2

|Xn
2

, F
2

) may be written as a product distribu-
tion. This will enable the outer bound to be single letterized.

Lemma 1. The output of the oblivious decoder has a product
distribution conditioned on the parameters of the known
codebook, that is,

PY n
2 |Xn

2 F2Qn
(yn

2

|xn
2

, f
2

, qn
) =

Y

i2[1:n]

PY2|X2,Q(y
2i|x2i, qi).

(2)

Proof: Starting with

PY n
2 Xn

1 |Xn
2 F2Qn

(yn
2

, xn
1

|xn
2

, f
2

, qn
)

(i)

= PXn
1 |Qn

(xn
1

|qn
)

Y

i2[1:n]

PY2|X1,X2
(y

1i|x1i, x2i)

(ii)

=

Y

i2[1:n]

PX1|Q(x
1i|qi)PY2|X1,X2

(y
1i|x1i, x2i),

where (i) follows since Xn
1

and (Xn
2

, F
2

) are conditionally
independent given the time sharing sequence and the channel
is memoryless, (ii) uses the fact that Xn

1

has a product
distribution if not conditioned on F

1

as in (1). Marginalization
of the above over Xn

1

implies (2) for

PY2|X2,Q(y|x, q) :=

X

x02X1

PX1|Q(x0|q)PY2|X1,X2
(y|x0, x).

as claimed.
We are now ready to prove a converse for the ISD-IC-OR.

In the following we shall derive rate bounds for R
1

and R
2

individually that hold for any memoryless channel. The ISD
condition will only be needed in the sum-rate bound.

Theorem 2 (Region RO). An achievable rate pair (R
1

, R
2

)

for the ISD-IC-OR must satisfy

R
1

 I(Y
1

; X
1

|X
2

, Q) (3)
R

2

 I(Y
2

; X
2

|Q) (4)
R

1

+ R
2

 H(Y
1

|Q) + H(Y
2

|U
2

, Q)

� H(T
2

|X
2

, Q) � H(T
1

|Q) (5)
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for some input distribution

PQ,X1,X2,U2 = PQPX1|QPX2|QPU2|X2
, (6)

where U
2

is a conditionally independent copy of T
2

given X
2

PU2,T2|X2,Q(u, t|x, q) = PT2|X2
(t|x)PT2|X2

(u|x), (7)

and where |Q|  2. We denote this region as RO.

Proof: In the following the inequalities marked with (a)
follow from Fano’s inequalities

H(W
1

|Y n
1

, F
1

, F
2

)  n✏n, H(W
2

|Y n
2

, F
2

)  n✏n,

with ✏n ! 0 as n ! 1, those with (b) since F
1

, F
2

, W
1

and W
2

are mutually independent, those with (c) from the
data processing (Fi, Wi) ! (Xn

1

, Xn
2

) ! Y n
i , i 2 {1, 2},

and those with (d) from the chain rule, conditioning reduces
entropy, and from the memoryless property of the channel (for
R

1

) or from Lemma 1 (for R
2

). We have

n(R
1

� ✏n)

(a)

 I(W
1

; Y n
1

, F
1

, F
2

)

(b)

= I(W
1

; Y n
1

|F
2

, F
1

, W
2

)

(c)

 I(Xn
1

; Y n
1

|F
2

, F
1

, Xn
2

)

(d)


X

i2[1:n]

I(X
1i; Y1i|X2i),

n(R
2

� ✏n)

(a)

 I(W
2

; Y n
2

, F
2

)

(b)

= I(W
2

; Y n
2

|F
2

)

(c)

 I(Xn
2

; Y n
2

|F
2

)

(d)


X

i2[1:n]

I(X
2i; Y2i).

For the sum-rate, we proceed as above until step (c) (except
that we do not give side information W

2

to receiver 1) and
then we provide receiver 2 with a genie side information as
in [5], that is, we give a Un

2

such that U
2i is jointly distributed

with X
2i according to (7); by doing do we have

n(R
1

+ R
2

� 2✏n)

 I(Xn
1

; Y n
1

|F
1

, F
2

) + I(Xn
2

; Y n
2

, Un
2

|F
2

)

= H(Y n
1

|F
1

, F
2

) � H(Y n
1

|F
1

, F
2

, Xn
1

)

+ H(Un
2

|F
2

) � H(Un
2

|F
2

, Xn
2

)

+ H(Y n
2

|F
2

, Un
2

) � H(Y n
2

|F
2

, Xn
2

, Un
2

)

(e)

= H(Y n
1

|F
1

, F
2

) � H(Tn
2

|F
1

, F
2

)

+ H(Un
2

|F
2

) � H(Un
2

|F
2

, Xn
2

)

+ H(Y n
2

|F
2

, Un
2

) � H(Tn
1

)

(f)

= H(Y n
1

|F
1

, F
2

) � H(Tn
2

|F
1

, F
2

)

+ H(Tn
2

|F
2

) � H(Tn
2

|F
2

, Xn
2

)

+ H(Y n
2

|F
2

, Un
2

) � H(Tn
1

)

(g)

= H(Y n
1

|F
1

, F
2

) + H(Y n
2

|F
2

, Un
2

)

� H(Tn
2

|F
2

, Xn
2

) � H(Tn
1

)

(h)


X

i2[1:n]

H(Y
1i) + H(Y

2i|U2i) � H(T
2i|X2i) � H(T

1i),

where the inequalities follow since: (e) ISD property and inde-
pendence of (Xn

1

, Tn
1

) and Xn
2

, (f) by definition of Un
2

, (g) by

independence of Xn
1

and Xn
2

, H(Tn
2

|F
1

, F
2

)�H(Tn
2

|F
2

) = 0,
(h) the single letterization of the entropy terms with negative
sign follows from the memoryless property of the channel (for
H(Tn

2

|F
2

, Xn
2

)) or by using Lemma 1 (for H(Tn
1

)).
Finally, the introduction of a time-sharing random variable

Q ⇠ Unif[1 : n] yields the claimed bounds. By using the
Fenchel-Eggleston-Caratheodory theorem and arguments as in
[4, Appendix A] one can show that |Q|  2 suffices.

IV. CAPACITY REGION TO WITHIN A CONSTANT GAP

For achievability for the ISD-IC-OR, we consider the fol-
lowing simplified Han-Kobayashi scheme [6]: encoder 1 trans-
mits private messages only, while encoder 2 (corresponding
to the oblivious receiver) does rate-splitting and sends both a
common and a private message. We have:

Lemma 3 (Region Ri). The following rate region is achiev-
able for the ISD-IC-OR

R
1

 I(X
1

; Y
1

|U
2

, Q) (8)
R

2

 I(X
2

; Y
2

|Q) (9)
R

1

+ R
2

 I(X
1

, U
2

; Y
1

|Q) + I(X
2

; Y
2

|U
2

, Q) (10)

for all distributions in (6)-(7).

Compared to [6], we restricted the distribution of encoder
2’s common codebook to be that of U

2

in the outer bound and
we set U

1

= ;. We denote this region as Ri. We further note
that this region is indeed achievable without knowledge of F

1

at receiver 2 since the first transmitter only sends a private
message, i.e., receiver 2 does not attempt to jointly decode
transmitter 1’s private signal in the Han-Kobayashi scheme.

Comparing inner and outer bounds gives:

Theorem 4 (Constant Gap). For all distributions in (6)-(7)

(R
1

, R
2

) 2 RO =) (R
1

� I(X
2

; T
2

|U
2

, Q), R
2

) 2 Ri.

Proof: First, we loosen the upper bound to ¯RO by
replacing X

2

with U
2

in all positive entropy terms of region
RO, which is permitted since H(Y

1

|X
1

, X
2

) = H(T
2

|X
2

) =

H(T
2

|X
2

, U
2

)  H(T
2

|U
2

) by injectivity, independence of
inputs, data processing inequality, and conditioning reduces
entropy. We conclude that RO ✓ ¯RO. Comparing ¯RO and
Ri inequality by inequality yields the claim.

V. GAUSSIAN AND LINEAR DETERMINISTIC MODELS

We consider here two ISD-IC-ORs: the Gaussian Interfer-
ence Channel (G-IC) and the Linear Deterministic Interference
Channel (LD-IC), which models the G-IC at high SNR [7].

A. Linear Deterministic IC-OR

The LD-IC-OR has input/output relationship

Y
1

= Sq�n11X
1

+ Sq�n12X
2

, (11)
Y

2

= Sq�n21X
1

+ Sq�n22X
2

, (12)

where summations and multiplications are in GF(2), S is the
q ⇥ q shift matrix [7], and q := max{n

11

, n
12

, n
21

, n
22

} for
some non-negative integers (n

11

, n
12

, n
21

, n
22

). The LD-IC is
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an approximation at high SNR of the G-IC with the parameters
of the two models related as nij = blog(1 + |hij |2)c, (i, j) 2
{1, 2}2 [7], where hij is defined in (13).

For the LD-IC-OR, by specializing Theorem. 4, we have
the following lemma:

Lemma 5. For the Linear Deterministic IC-OR RO = Ri.

Proof: For the LD-IC-OR we have T
2

= U
2

= Sq�n12X
2

and therefore I(X
2

; T
2

|U
2

, Q) = 0.
We next evaluate the capacity region RO for the case

of symmetric channel gains, that is n
11

= n
22

= n
S

and
n

12

= n
21

= n
I

:= n
S

↵ for some non-negative ↵. The
normalized sum-capacity of the classical LD-IC with full
codebook knowledge is denoted as

d(W)

(↵) :=

max{R
1

+ R
2

}
2n

S

,

i.e., d(W)

(↵) is the so-called W-curve. In [7] it was shown that
i.i.d. Bernoulli(1/2) bits yield d(W)

(↵). Clearly, since we may
provide the LD-IC-OR with additional codebook index F

1

at
receiver 2 to obtain the LD-IC with full codebook knowledge,
we have that the normalized sum-capacity of the LD-IC-
OR is upper bounded by d(W)

(↵). By extensive computer
evaluations we could observe the surprising result that even
with |Q| = 1, i.e., without time sharing, that the normalized
sum-capacity of the LD-IC-OR equals d(W)

(↵). This implies
that partial codebook knowledge at one receiver does not
impact the performance of the LD-IC. This might suggest a
more general principle: there is no loss of optimality in lack
of codebook knowledge as long as the oblivious receiver can
remove the interfering signal, regardless of whether or not it
can decode the message carried by the interference.

Another interesting observation is that i.i.d. Bernoulli(1/2)
inputs bits are no longer optimal. In Table I we report for
some values of ↵ the input distributions to be used in RO.
We notice that inputs are now correlated and not uniform. For
example, Table I shows that for ↵ = 4/3 the inputs X

1

and
X

2

are binary vectors of length log

2

(16) = 4 bits; out of the
16 different possible bit sequences, only 4 are actually used at
each transmitter with strictly positive probability to achieve
d(W)

(4/3) = 4/6; with i.i.d. Bernoulli(1/2) input bits we
would obtain a normalized sum-rate of 1/2 = 3/6, as for time
division [7]. In other words, we demonstrate the surprising
fact that non i.i.d. Bernoulli(1/2) points achieve points on
the outer bound of the LD-IC-OR that are not achievable by
Bernoulli(1/2) input bits.

B. Gaussian IC-OR

We now consider a single-antenna real-valued G-IC-OR,
whose input/output relationship is

Y
1

= h
11

X
1

+ h
12

X
2

+ Z
1

(13a)
Y

2

= h
21

X
1

+ h
22

X
2

+ Z
2

(13b)

where hij , are constant channel coefficients, the inputs Xi 2
R are subject to power constraints E[X2

i ]  1, i 2 {1, 2}, and
the noise processes Zi ⇠ N (0, 1) and are i.i.d.

TABLE I
EXAMPLES OF SUM-RATE OPTIMAL DISTRIBUTIONS FOR THE LD-IC-OR.

↵ Probability mass function
1
2 PX1 = [0.5, 0, 0.5, 0]

PX2 = [0, 0.5, 0, 0.5]
2
3 PX1 = [0, 0, 0.25, 0.25, 0, 0, 0, 0.25, 0.25]

PX2 = [0, 0, 0.25, 0.25, 0, 0, 0, 0.25, 0.25]
1 PX1 = [0, 0, 0.5, 0.5]

PX2 = [0, 0.5, 0, 0.5]
4
3 PX1 = [0, 0, 0, 0, 0, 0.25, 0, 0.25, 0, 0, 0, 0, 0, 0.25, 0, 0.25]

PX2 = [0, 0, 0, 0.25, 0, 0.25, 0, 0, 0, 0, 0, 0, 0, 0.25, 0, 0.25]
2 PX1 = [0, 0.5, 0, 0.5]

PX2 = [0, 0.5, 0, 0.5]

↵1

2

2

3

1 2

1

1

2

4

3

d(↵)

Fig. 2. The dash-dotted black line: normalized sum-capacity of the LD-
IC-OR, i.e., the W-curve (also an outer bound to G-IC-OR); red dots: points
achieved by input distributions in Table I; solid blue line: achievable gDoF
with Gaussian inputs for the G-IC-OR.

By specializing Theorem. 4, we have:

Lemma 6 (Half Bit Gap for G-IC-OR). For the G-IC-OR, if
(R

1

, R
2

) 2 RO, then (R
1

� 1/2, R
2

) is achievable.

Proof: In Gaussian noise, T
2

:= h
12

X
2

+ Z
1

and thus
U

2

is chosen to be U
2

:= h
12

X
2

+ Z 0
1

where X
2

, Z
1

, Z 0
1

are
mutually independent and Z 0

1

⇠ Z
1

. Then,

I(X
2

; T
2

|U
2

, Q) = h(T
2

� U
2

|U
2

, Q) � h(Z
1

)

 h(Z
1

� Z 0
1

) � h(Z
1

)  1/2 log(2).

as claimed.
An interesting question is whether Gaussian inputs are

optimal for RO. The following discussion shows that in
general the answer is in the negative. For simplicity we focus
on the achievable generalized Degrees of Freedom (gDoF)
for the symmetric G-IC-OR (|h

11

| = |h
22

| =

p
S and

|h
12

| = |h
21

| =

p
I with I = S↵ for some non-negative

↵) without time sharing, i.e., |Q| = 1, defined as

d(↵) := lim

S!+1

R
1

+ R
2

2 · 1

2

log(1 + S)

By Evaluating Theorem 2 for independent Gaussian inputs
(which we do not claim is the optimal) we obtain

(R
1

+ R
2

)

(GG)

= min

⇢
1

2

log (1 + S) +

1

2

log

✓
1 +

S

1 + I

◆
,

2013 IEEE International Symposium on Information Theory

2042



1

2

log

✓
1 +

S

I + 1

◆
+

1

2

log

✓
(I + 1)

2

+ S

1 + I

◆�
.

resulting in

d(GG)

(↵) =

1

2

+


1

2

� ↵

�
+

.

For future reference, with Time Division (TD) and Gaussian
codebooks we can achieve

(R
1

+ R
2

)

(TD)

=

1

2

log (1 + S) () d(TD)

(↵) =

1

2

.

We plot the achievable gDoF vs. ↵ in Fig. 2, together with the
gDof of the classical IC given by d(W)

(↵) [8], which forms
an outer bound to the gDoF of the G-IC-OR. We note that
Gaussian inputs are indeed optimal for 0  ↵  1/2, i.e.,
d(GG)

(↵) = d(W)

(↵), where interference is treated as noise
even for the classical IC (which is also achievable by the G-
IC-OR). For ↵ � 1/2 we have d(GG)

(↵) = d(TD)

(↵), that
is, Gaussian inputs perform as time division. Gaussian inputs
are sub-optimal in general as we show next.

Consider ↵ = 4/3: with Gaussian inputs or with time
division we only achieve d(GG)

(4/3) = d(TD)

(4/3) = 1/2.
Notice the similarity with the LD-IC-OR: the input distribution
that is optimal for the non-oblivious IC performs as time
division for the G-IC-OR. Inspired by the LD-IC-OR we
explore now the possibility of using a non-Gaussian input. In
particular, we choose an input distribution that allows the obvi-
ous receiver to soft-estimate the interfering codeword symbols
(even though it is not able in general to decode the interfering
message). By following [1, Section VI.A], which demonstrated
that binary signaling outperforms Gaussian signaling for a
fixed finite SNR, we consider a uniform PAM constellation
with N points. Fig. 3 shows the achievable normalized sum-
rate R1+R2

2· 1
2 log(1+S)

as a function of S for the case where X
1

(the
input of the non-oblivious pair) is a PAM constellation with
N = bS1/6c points and X

2

(the input of the oblivious pair)
is Gaussian. Notice that the number of points in the discrete
input is a function of the direct link channel gain S. We also
report the achievable normalized sum-rate with time division
and Gaussian inputs. Fig. 3 shows that for sufficiently large S
using a discrete input outperforms time division; moreover, for
the range of simulated S, it seems that the proposed discrete
input achieves a gDoF of d(DG)

(↵) = ↵/2 = 4/6 as for the
classical IC with full codebook knowledge.

We conjecture that a strategy with one discrete input out-
performs Gaussian signaling for all ↵ > 1, which appears to
be the case from extensive numerical evaluations and is the
subject of ongoing work. Proving the validity of our conjecture
could also help the settle the open question whether Gaussian
inputs exhaust the outer bound in related oblivious channel
models – see [2, Section III.A] and [3, Remark 5].

VI. CONCLUSION

We focused on an IC in which one of the decoders only
possesses one of the two transmitting codebooks (in contrast to
classical ICs where all nodes are aware of all codebooks). We
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Fig. 3. Achievable normalized sum-rate for the symmetric G-IC-OR with
↵ = 4/3: (1) time division: solid blue line; (ii) Gaussian inputs at both
transmitters: red stars; (3) X1 is a uniform PAM with N = bS1/6c points
and X2 is Gaussian: dash-dotted black line.

characterized the capacity of the injective semi deterministic
IC to within a constant gap and specialized it to the Gaussian
channel and to the Linear Deterministic approximation of
the Gaussian channel at high SNR; in the former case we
established capacity to within 1/2 bit, even though we could
not determine the optimal input distribution; in the latter, we
showed the exact capacity region and that the sum-capacity
with partial codebook knowledge is the same as that of the
classical IC with full codebook knowledge. An important next
step is to identify optimal input distributions for the Gaussian
noise channel. In this direction, we are currently investigating
the usage of discrete inputs for the non-oblivious user and of
Gaussian input for the oblivious transmitter, which numerically
seems to outperform Gaussian signaling and time division.
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