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Abstract—We present achievable error exponent regions for
the Two-Way AWGN channel under an expected block power
constraint and variable-length coding (VLC). We propose an
achievability scheme that allows terminals to cooperate via in-
teraction to detect decoding errors and request re-transmissions.
Under this scheme, in certain rate-pair regimes both directions
are able to simultaneously attain error exponent pairs larger than
the feedback-free point-to-point random coding error exponents.

A full version of this paper is accessible at: [1].

I. INTRODUCTION

Shannon [2] introduced the two-way channel, consisting of
two terminals, Ti for i ∈ {1, 2}, that exchange messages.
For the Two-way AWGN memoryless channel, the capacity
region corresponds to a rectangular region [3], [4] determined
by the interference-free AWGN capacities at signal-to-noise
ratio SNR, C = 1

2 log (1 + SNR) of each direction (denoted
by C12 and C21).

The reliability function (or error exponent) E(R) =
lim supN→∞

− lnPe

N provides a more refined yet still asymp-
totic characterization of the communication limits, where Pe
is the probability of error of a blocklength-N code. For
one-way channels, E(R) has been studied with and without
feedback. In memoryless channels, while feedback cannot
increase capacity, it may simplify coding schemes and enlarge
error exponent [5].

In the presence of noiseless feedback in one-way AWGN
channels, error exponents can be greatly improved as shown
in [6]–[10]. When noisy feedback is used, error exponent
improvements over non-feedback channels are still possible, in
particular when the feedback channel is stronger (less noisy)
than the forward channel. A generalization of the Yamamoto-
Itoh coding scheme under VLC with perfect feedback [10] to
noisy feedback was presented by Sato-Yamamoto [11], and
this scheme’s reliability tends to Schalkwikj-Barron’s [9] as
the feedback noise approaches zero.

For two-way parallel memoryless channels (such as the
Two-way AWGN channel), terminals send messages and
(noisy) feedback over the same channels. This interaction
(noisy feedback) does not increase the capacity region of the
Two-way AWGN channel. Whether interaction in the Two-way
AWGN channel can increase error exponents is addressed in
[12] at zero-rate; here we focus on positive rate-pairs.

Apart from the authors’ prior work on two-way channels
[12], the most related prior work is that for error exponents

for one-way channels with noisy feedback in the positive rate
regime [11], [13]. In the one-way noisy feedback setting,
error exponent gains have mainly been attained when the
feedback channel is much stronger than the direct channel, as
in [14] where the sphere packing bound is exceeded for a wide
rate regime. This works considers an expected block power
constraint, as that used in [15] for the zero-rate regime (trans-
mission of two messages). Interestingly, in the two-way setting
for positive rate, we are able to attain error exponent gains
even when the channels in the two directions are symmetric
– one direction need not be much stronger than the other. In
fact, the scheme presented here exploits this symmetry, and
is hence useful in a wider range of settings, including for
example full duplex two-way communications with channel
reciprocity. This scheme does rely on the flexibility provided
by an expected power constraint.

II. PROBLEM STATEMENT AND MAIN RESULT

Consider a two-way AWGN channel as in Figure 1, for
the transmission of |W1| = 2{nR12} and |W2| = 2{nR21}

equally likely messages in the 1 → 2 and 1 ← 2 directions
respectively. The output of this channel at the i-th terminal at
the k-th channel use is modeled as in (1):

Yi,k = Xi,k + ai,kX3−i,k +Ni,k, for k = 1, 2, ... (1)

where, ai,k is a constant, Xi,k ∈ R the channel input
satisfying a block power constraint, Yi,k ∈ R the output, and
Ni,k ∼ N (0, σ2

i ) zero-mean AWGN, each independent and
identically distributed across channel uses. Since each terminal
may subtract its own input, and setting ai,k = 1, (1) simplifies
to: Yi,k = X3−i,k +Ni,k.

Fig. 1. Two-way AWGN channel.

Let X1,Y1,X2,Y2 be the set of reals. A variable-length
two-way code Cvl

(
|W1|, |W2|, P1, P2, σ

2
1 , σ

2
2 , N

)
for the trans-

mission of messages Mi uniformly selected from Wi in the
i → (3 − i) directions for i = 1, 2 over a two-way AWGN



channel with average transmitter power Pi, and noise variances
σ2
i respectively, consists of:
1. Two encoding functions: fi,k : Wi × Yk−1

i → Xi for
i = 1, 2 and k = 1, 2, ... leading to channel inputs Xi,k =
fi,k

(
Mi, Y

k−1
i

)
satisfying an expected block power constraint

for each block of length N (where E[·] denotes expectation):

E

[
N∑
k=1

X2
i,k

]
≤ NPi. (2)

2. Two decoding functions: φi,k : Yki →W3−i.
3. A non-negative transmission time ∆ (a random variable)

satisfying E[∆] ≤ N , defined as the slot at which both
messages are decoded (and transmitters can move on to the
next message).

Let the average rate in the i → (3 − i) direction be:
R̄i,(3−i) = log |Wi|

E[∆] . Next, let the signal-to-noise ratio for
each direction be SNRi,(3−i) = Pi/σ

2
3−i, and the maximum

error probability attained in each direction by a two-way
Cvl
(
|W1|, |W2|, P1, P2, σ

2
1 , σ

2
2 , N

)
variable length code at an

average rate-pair (R̄12, R̄21) under power constraint (2) be:

Pi→(3−i)
error

(
R̄12, R̄21, SNR12, SNR21,∆

)
:= max

mi∈Wi

P
(
φ∆
i 6= m3−i |Mi = mi,M3−i = m3−i

)
The two way capacity region is known [16] to equal all rate-

pairs (R1, R2) inside the rectangle bounded by R1 ≤ C12 =
1
2 log(1 + P1

σ2
2
) and R2 ≤ C21 = 1

2 log(1 + P2

σ2
1
).

Definition 1: An error exponent pair, (E12, E21), is achiev-
able if simultaneously, for E[∆] ≤ N :

E12

(
R̄12, R̄21,SNR12,SNR21

)
≥

− lnP1→2
error

(
R̄12, R̄21,SNR12,SNR21, N

)
E[∆]

E21

(
R̄12, R̄21,SNR12,SNR21

)
≥

− lnP1←2
error

(
R̄12, R̄21,SNR12,SNR21, N

)
E[∆]

Definition 2: The error exponent region (EER) of
a two-way AWGN channel transmitting at an aver-
age rate-pair (R̄12, R̄21) under an expected block power
constraint corresponds to the union of all achievable
error exponent pairs E12

(
R̄12, R̄21,SNR12,SNR21

)
and

E21

(
R̄12, R̄21,SNR12,SNR21

)
.

We first present a proposition that involves the use of block
codes under an average power constraint

∑N
k=1Xi,k ≤ NP

in the absence of terminal interaction / feedback (i.e. the
encoding functions are functions of the messages alone):

Proposition 1: An achievable error exponent pair for the
two-way AWGN channel for the rate pair (R12, R21) under
an average power constraint is:

E12(R12, R21,SNR12,SNR21) ≥ Erc
AWGN(R12,SNR12),

E21(R12, R21,SNR12,SNR21) ≥ Erc
AWGN(R21,SNR21),

where Erc
AWGN(R,SNR) corresponds to the random coding

error exponent lower bound for a one-way AWGN channel
of signal to noise ratio SNR at rate R, see [17, Section 7.4].

Our main results correspond to two achievable EERs defined
for any average rate-pair in the capacity region. One uses com-
pression to send the feedback signals and the other does not.
The former is useful for rates close to capacity, whereas the
latter for lower rates. Our results are both based on a variable
length coding scheme under power constraint (2) that exploits
interaction to facilitate error detection and correction. We will
show how the scheme operates for the case with compression
(the one without compression can be easily obtained from
the one with compression). Let R := max{R̄12, R̄21} and
C := min{C12, C21}.

Theorem 1: Uncompressed feedback: An achievable error
exponent pair for the two-way AWGN channel under variable-
length coding and an expected block power constraint at an
average rate-pair (R̄12, R̄21), for 0 < R < 0.5C is determined
as the union over all 0 ≤ λ ≤ 1, RFB = R, and satisfying
R̄12/λ ≤ C12, R̄21/λ ≤ C21 and RFB/(1− λ) ≤ C, of

E12(R̄12, R̄21,SNR12,SNR21, N) ≥ (3)

E21

(
R̄12, R̄21,SNR12,SNR21, N

)
≥ (4).

Theorem 2: Compressed feedback: An achievable error
exponent pair for the two-way AWGN channel under variable-
length coding and an expected block power constraint at an
average rate-pair (R̄12, R̄21), is determined as the union over
all λ and RFB in 0 ≤ λ ≤ 1, R̄12/λ ≤ C12, R̄21/λ ≤ C21,
0 ≤ R̄FB < min {(1− λ)C,R} of

E12(R̄12, R̄21,SNR12,SNR21, N)

≥ min

{
(3), RFB ln(2) + λErc

AWGN

(
R12

λ
,SNR12

)}
E21

(
R̄12, R̄21,SNR12,SNR21, N

)
≥ min

{
(4), RFB ln(2) + λErc

AWGN

(
R21

λ
,SNR21

)}
.

Note that we have excluded the zero-rate regime, since this
scheme is outperformed by the one derived in [18], which
results from a generalization of a one-way scheme with noisy
feedback [15] to the two-way AWGN channel under the same
power constraint.

The following section presents a coding scheme that
achieves Theorems 1 and 2.

III. TWO-WAY INTERACTIVE CODING SCHEME

Both Theorems employ a coding scheme in which terminals
first exchange their messages, and then initiate a cooperative
feedback stage aiming to detect errors at both receivers. The
only difference between the two coding schemes is that one
sends feedback uncompressed, which can only be done for
small enough rates, and the other uses hashing to compress the
feedback signal, which allows transmission at higher rates. If
an error is detected at any terminal, an alarm signal is triggered
during the final stage, otherwise both transmitters remain
silent. The occurrence of an alarm forces both terminals to
retransmit their messages using a new block of length N .
Since alarm events occur with exponentially small probability,
retransmissions are very rare and thus the power constraint (2)



E12(R12, R21,SNR12,SNR21, N) ≥ min

{
(1− λ)Erc

AWGN

(
RFB

1− λ
,SNR12

)
(3)

+(1− λ)Erc
AWGN

(
RFB

1− λ
,SNR21

)
+ λErc

AWGN

(
R12

λ
,SNR12

)
, λErc

AWGN

(
R12

λ
,SNR12

)
+ λErc

AWGN

(
R21

λ
,SNR21

)}
.

E21(R12, R21,SNR12,SNR21, N) ≥ min

{
(1− λ)Erc

AWGN

(
RFB

1− λ
,SNR21

)
(4)

+(1− λ)Erc
AWGN

(
RFB

1− λ
,SNR12

)
+ λErc

AWGN

(
R21

λ
,SNR21

)
, λErc

AWGN

(
R21

λ
,SNR21

)
+ λErc

AWGN

(
R12

λ
,SNR12

)}
.

is satisfied. If no alarm is triggered, both transmitters move to
the transmission of a new message.

During the feedback stage terminals exchange a special
message that is a function of the true message sent out in
the first stage and the one received from the other terminal.
This message should be the same for both directions. Once
this message is exchanged, both terminals can compare the
decoded special message and trigger an alarm if they are
not equal. By means of this cooperation each terminal may
become aware of decoding errors made locally or at the other
end during the first stage. As we will see, we may still have
decoding errors in which no alarm is triggered.

A. Scheme operation
We present the coding scheme which employs compression

(Theorem 2), but note that the no compression Theorem 1 may
be easily obtained from this scheme by simply omitting the
hashing function used to reduce the feedback rate. We first
introduce some notation that will be useful in the upcoming
sections. Let CRC(2NR, P,N) denote a randomly generated
code for the transmission for 2NR messages using a block
of length N under average power P . An achievable error
exponent for this code is determined by the random coding
error exponent lower bound ERC

AWGN(R,SNR) as shown in [17].
Figure 2 shows a block diagram of our scheme comprising

three stages whose durations are parameterized by λ ∈ [0, 1]:

Message M1
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Fig. 2. Block diagram for the two-way coding scheme under a expected block
power constraint. Note that the special message gi or its corresponding hash
ḡi is fed back depending on whether compression is used or not.

1. Transmission: This stage lasts for λ(N−1) channel uses,
where terminal Ti transmits message Mi = mi, uniformly
selected from Wi utilizing a random code in each direction,
which are respectively denoted by CRC(2NR̄12 , P1, λN) and
CRC(2NR̄21 , P2, λN). By the end of this stage, each terminal
has a preliminary estimate of the received message M̂3−i.

2. Feedback: This stage lasts for (1 − λ)(N − 1) channel
uses. Here, each terminal Ti generates a special feedback
message we denote by gi that are exchanged during this
stage and used later to detect errors. To generate gi, the
i-th encoder combines the true known message mi and
the estimate M̂3−i as follows: Let FNq be a finite field
of size qN , where q is chosen as the smallest prime for
which qn > max

{
d2NR̄12e, d2NR̄21e

}
, where dxe denotes

to the smallest integer larger than x. Next, let ui(mi) be
an injective mapping mi 7→ FNq where mi ∈ Wi. Then,
for terminal T1, g1 = u1(m1) ⊕ u2(M̂2), whereas for T2,
g2 = u1(M̂1) ⊕ u2(m2), where ⊕ denotes modulo addition
over the finite field FNq . Message gi is an element of the
set G = {1, ...,max{2NR̄12 , 2NR̄21}}, whose cardinality is
determined by the direction transmitting at a higher rate. Note
that in the absence of errors during the first stage, the messages
decoded at each terminal T3−i are M̂i = mi for i = 1, 2, and
we must have g1 = g2.

Note also that in this stage, both directions transmit at
the same rate, which may exceed the rate available at one
or both directions because of their capacities and since only
(1 − λ)(N − 1) channel uses remain from the first stage.
Therefore, we consider the compression method introduced
in [19] in which the |G| = max{2NR̄12 , 2NR̄21} messages
are randomly assigned to 2NRFB bins, where RFB is a de-
sign parameter. Thus, the feedback message becomes the bin
number (or hash) that contains gi, which we denote by ḡi ∈
{1, ..., 2NR̄FB}. It follows that R̄FB ≤ (1− λ) min{C12, C21}.
If R̄FB = max{2NR̄12 , 2NR̄21} then each bin contains exactly
one message, and ḡi = gi. Messages ḡi are exchanged
using a CRC

(
2NR̄FB , Pi, (1− λ)N

)
code in each direction and

respectively decoded as ˆ̄G3−i.
Observe as well that the compression following the gener-

ation of messages gi, may cause binning (or hash) collisions
in which a gi containing an error may result in the same bin
as the gi of an error free transmission. We consider this and
other possibilities when we analyze the probability of error of
the scheme in Section IV.

3. Alarm: For this stage, each terminal compares the
locally generated message bin index ḡi with the estimate ˆ̄G3−i
obtained in the second stage. An alarm event is declared in



case of a mismatch. The result of this operation is sent to the
other terminal using the single channel use signaling (5):

Xi,N =

0, if ḡi = ˆ̄G3−i,√
Pi

P(Alarm) , otherwise.
(5)

Thus, an alarm corresponds to a very high amplitude transmis-
sion since, as we show later in the Appendix of [1], P(Alarm)
is exponentially small (and also corresponds to the probability
of a retransmission P(Rtx)). This transmission is decoded at
the (3−i)-th terminal by comparing the received signal Y3−i,N
with a threshold Υ = N , as in [15], where this signaling is
introduced for the AWGN channel with active noisy feedback
and the transmission of two messages. Moreover, it can be
shown that the probability of error in decoding Y3−i,N decays
to zero faster than any exponential, hence without error.

When an alarm occurs, both terminals discard their pre-
liminary estimates and initiate a retransmission, which means
a repetition of the three stages using a new block of length
N for the same message. Figure 2 illustrates three of these
consecutive blocks. Stages have been colored to identify what
message they are associated with and for which direction.
We have depicted the transmission of a stream of messages
indexed by (l). The first block corresponds to the l-th messages
being sent from both terminals and successfully decoded since
no alarms are triggered. The second block corresponds to the
transmission of the (l+ 1)-th messages. Note that terminal T1

triggers an alarm (colored in red), therefore, a retransmission
is necessary for both directions, and occurs in the next block,
where the three stages are repeated for messages (l+ 1). This
time, transmission is successful since no alarms are triggered,
and both terminals can move to message (l + 2) in the next
block (not shown).

Decoding rule: Once the three stages have concluded, the i-
th receiver declares that the message sent by the other terminal
corresponds to the preliminary decision M̂3−i if no alarm is
detected, otherwise, it awaits until the end of a new block of
length N that conveys a retransmission. The final decoding
decision occurs only in the absence of alarms, hence, multiple
retransmissions may happen until both terminals can move to
a new message.

IV. PROOF OF THEOREM 2

This section presents a short version of the proof of Theo-
rem 2. We refer the reader to the Appendix A for the complete
analysis. The proof consists of three parts: the analysis of
the probability of error, the expected transmission time, and
the error exponents. Here, we consider compressed feedback,
since as we show in the Appendix of the extended version [1],
this is related to the uncompressed one by the inclusion of an
extra term in the overall probability of error.

A. Probability of error analysis

In the following, the feedback stage uses compression. We
analyze the 1 → 2 direction only, since the other follows by
symmetry. Let the probability of error of the first and second

stages, meaning that a message sent (without feedback) is
incorrectly decoded, be denoted as

−→
Pe1 for the first stage,

and
−→
Pe2 for the second stage, where arrows indicate the

communication direction. Then,

P1→2
error = P

(
M̂1 6= m1,No-Alarm |M1 = m1,M2 = m2

)
= P

(
No-Alarm; M̂1 6= m1; M̂2 = m2 |M1 = m1,M2 = m2

)
+ P

(
No-Alarm; M̂1 6= m1; M̂2 6= m2 |M1 = m1,M2 = m2

)
(6)

The event {No-Alarm} ≡ {( ˆ̄G1 = ḡ2) ∩ ( ˆ̄G2 = ḡ1)},
means that no alarm occurs if both terminals declare that their
feedback message ḡi matches the one received from the other
terminal. As shown in the Appendix of [1], this probability
can be upper bounded as:

P1→2
err ≤ max

{−→
Pe2
←−
Pe2
−→
Pe1 , ph

−→
Pe1 ,
−→
Pe1
←−
Pe1

}
(7)

P1←2
err ≤ max

{←−
Pe2
−→
Pe2
←−
Pe1 , ph

←−
Pe1 ,
←−
Pe1
−→
Pe1

}
(8)

B. Expected transmission time:
Recalling that a retrasmission occurs when an alarm is

declared at either terminal, the alarm event corresponds to:
{Alarm} = {( ˆ̄G2 6= ḡ1)∪( ˆ̄G1 6= ḡ2)}. Hence, a retransmission
happens with probability P(Rtx) = P (Alarm):

P(Rtx) = P
(

( ˆ̄G2 6= ḡ1) ∪ ( ˆ̄G1 6= ḡ2) |M1 = m1,M2 = m2

)
≤ P

(
ˆ̄G2 6= ḡ1 |M1 = m1,M2 = m2

)
+ P

(
ˆ̄G1 6= ḡ2 |M1 = m1,M2 = m2

)
As we show in the Appendix of [1], P(Rtx)→ 0 as the block
length N →∞. It follows that the expected transmission time
is determined by the probability of retransmission, given as:

E[∆] = N ·
∞∑
k=0

·P(Rtx)k = N · 1

1− P(Rtx)

Thus, E[∆] ≈ N when P(Rtx)→ 0.

C. Error exponents

Equations (7) and (8) describe the probability of error in
terms of the following probabilities.−→
Pe1 ≤ exp

{
−NλErc

AWGN

(
R
λ ,SNR12

)}
,

−→
Pe2 ≤ exp

{
−N(1− λ)Erc

AWGN

(
R

1−λ ,SNR12

)}
,

←−
Pe1 ≤ exp

{
−NλErc

AWGN

(
R
λ ,SNR21

)}
,

←−
Pe2 ≤ exp

{
−N(1− λ)Erc

AWGN

(
R

1−λ ,SNR21

)}
.

Note that in each of the probability of error terms shown
above, the error exponent is scaled down by either λ or (1−
λ) depending on whether the term corresponds to the first
or second stage of the scheme. Moreover, the instantaneous
transmission rate is scaled up in order to compensate for the
shorter block length (determined by duration of each stage)
and to guarantee that the target operating rate-pair is achieved.
Finally, it follows that from (7), an expected transmission time
E[∆] ≈ N , we have that for very large N :



(a)

(b)

rate-pair point (a)                                                                                       rate-pair point (b)

Fig. 3. Consider a two-way channel with SNR12 = SNR21 = 5dB. Left: Capacity region, where blue dots represent rate-pairs for which the random coding
error exponent can be achieved. The red dots represent rate-pair for which the random coding error exponent can be exceeded for both directions. Center-Right:
EER for the rate-pair point (a) (0.9C12, 0.8C21), and rate-pair point (b) (0.02C12, 0.08C21).

−1

E[∆]
lnP1→2

error ≥

−1

E[∆]
min

{
ln
(−→
Pe2
←−
Pe2
−→
Pe1

)
, ln
(
ph
←−
Pe1

)
, ln
(−→
Pe1
←−
Pe1

)}
,

from which (3) is obtained. The result for the other direction
follows by symmetry.

V. NUMERICAL SIMULATIONS

This section presents numerical evaluations of our results.
Figure 3-left presents the capacity region of a two-way AWGN
channel where red color denotes the rate-pair regimes in which
our schemes outperform the random coding error exponent
simultaneously in both directions. In the center/right plots,
we present the achievable error exponent regions for the rate-
pair points marked as (a) and (b) in the capacity region. As
a comparison reference, these plots also show the achiev-
able EER by means of point-to-point transmissions and no
cooperation, corresponding to the darker rectangle resulting
from Proposition 1. Observe an interesting trade off between
the error exponents of both directions. This is more dramatic
for point (a), which is in the higher rate-pair regime. Also,
note that for both points (a) and (b) it is possible to attain
error exponents larger than Proposition 1 in both directions
simultaneously.

Next, we evaluate Theorems 1 and 2 for the rate-pairs
along the line that connects the points (0, 0) and (C12, C21)
of the capacity region of the two-way AWGN channel (as
shown in Figure 3-left with a solid black line). We considered
a symmetric two-way channel in which both directions are
of similar SNR. Figure 4 shows the largest error exponent
achieved by the scheme in the 1 → 2 direction. A similar
plot would result for the opposite direction. The solid blue
line presents the random coding error exponent lower bound,
achievable when terminals do not interact. The dashed red line
results by evaluating both Theorems and choosing the largest
achievable error exponent. Note that there exists important
error exponent gains in two regimes: lower (close to zero) and
higher (close to capacity) rate regimes. In the remaining rate-
pairs the scheme achieves the random coding error exponent.

Fig. 4. Achievable error exponents for the 1 → 2 direction for rates 0 <
R̄12 ≤ C12 for a Two-Way AWGN channel with SNR12 = SNR21 = 5dB.
Error exponents are normalized over the SNR and evaluated for rate-pairs
along the line connecting points (0, 0) and (C12, C21), see Figure 3 (left).

VI. CONCLUSION

The coding scheme we presented suggests that in a two-way
AWGN channel, interaction may be exploited to improve (over
non-feedback one-way error exponents under block coding)
error exponents in both directions simultaneously – even when
both directions have similar channel strength. Our feedback
strategy correlates the errors in the two directions, and any
terminal may trigger an alarm when the received feedback
message does not match the one sent. This cooperation
increases the error detection capabilities in both terminals.
Moreover since we use variable length coding, a detected error
can be corrected by the message retransmission that follows
the occurrence of an alarm.

The expressions presented in Theorems 1 and 2 are math-
ematically involved. We have left analytically optimizing the
parameters λ and RFB for future work.
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APPENDIX A
PROOF OF THEOREM 1

This appendix presents the detailed derivation of our results. First we present the analysis for our scheme in which the
feedback stage does not use compression, which implies some limitations on the rates for which error exponent improvements
are possible. The use of compression is presented later in a different subsection.

1) Probability of error analysis: The probability of error in the 1→ 2 direction is determined by the decoding rule of the
scheme and given by:

P1→2
error = P

(
M̂1 6= m1,No-Alarm |M1 = m1,M2 = m2

)
= P

(
No-Alarm; M̂1 6= m1; M̂2 = m2 |M1 = m1,M2 = m2

)
+ P

(
No-Alarm; M̂1 6= m1; M̂2 6= m2 |M1 = m1,M2 = m2

)
For the feedback stage, each terminal generates and transmits message gi, whereas it decodes the one sent from the other end
as Ĝ3−i. Note that the event {No-Alarm} ≡ {(Ĝ1 = g2) ∩ (Ĝ2 = g1)}. Meaning that no alarm would be detected at the
system if both terminals declare that their feedback message match the one received from the other terminal. We analyze each
term of the summation above as follows:

P
(

No-Alarm; M̂1 6= m1; M̂2 = m2 |M1 = m1,M2 = m2

)
= P

(
M̂2 = m2 |M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
←−−
Pe1
≤1

·P
(
M̂1 6= m1 | M̂2 = m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe1

· P
(

No-Alarm | M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
≤ P

(
No-Alarm | M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
·
−→
Pe1

= P

(Ĝ1 = g2); (Ĝ2 = g1)︸ ︷︷ ︸
No-Alarm

| M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

 · −→Pe1
= P

(
Ĝ1 = g2 | Ĝ2 = g1, M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
· P
(
Ĝ2 = g1 | M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
·
−→
Pe1 (9)

In the following we let gc to be the feedback message generated by the true messages m1 and m2. The events given in the
probability terms above imply:

M̂1 6= m1 =⇒ g2 6= gc

M̂2 = m2 =⇒ g1 = gc

Then, (9) can be rewritten as:

P
(

No-Alarm; M̂1 6= m1; M̂2 = m2 |M1 = m1,M2 = m2

)
≤ P

(
Ĝ1 = g2 | Ĝ2 = g1,

(
M̂1 6= m1 =⇒ g2 6= gc

)
,
(
M̂2 = m2 =⇒ g1 = gc

)
,M1 = m1,M2 = m2

)
· P
(
Ĝ2 = g1 |

(
M̂1 6= m1 =⇒ g2 6= gc

)
,
(
M̂2 = m2 =⇒ g1 = gc

)
,M1 = m1,M2 = m2

)
·
−→
Pe1

= P
(
Ĝ1 = g2 | Ĝ2 = g1,

(
M̂1 6= m1 =⇒ g2 6= gc

)
,
(
M̂2 = m2 =⇒ g1 = gc

)
,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe2

· P
(
Ĝ2 = g1 |

(
M̂1 6= m1 =⇒ g2 6= gc

)
,
(
M̂2 = m2 =⇒ g1 = gc

)
,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe2

·
−→
Pe1 (10)

≤
−→
Pe2 ·

←−
Pe2 ·

−→
Pe1 (11)

Equation (11) results from the facts that for the first term in (10) we have that g1 = gc is sent, and we evaluate the probability
that Ĝ1 = g2 (being g2 6= gc), so it is clearly upper bounded by the probability of error in the second stage. Similarly, when



g2 6= gc is being sent, we need the probability that Ĝ2 = g1, (being g1 = gc) which again, is upper bounded by the probability
of error in the second stage of the scheme. Next, we proceed similarly with the second term of the sum in (9):

P
(

No-Alarm; M̂1 6= m1; M̂2 6= m2 | M̂1 = m1; M̂2 = m2

)
= P

(
M̂2 6= m2 |M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe1

·P
(
M̂1 6= m1 | M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe1

· P
(

No-Alarm | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
≤ P

(
No-Alarm | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
·
←−
Pe1 ·

−→
Pe1

≤ P

(Ĝ1 = g2); (Ĝ2 = g1)︸ ︷︷ ︸
No-Alarm

| M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

 · ←−Pe1 · −→Pe1
≤ P

(
Ĝ1 = g2 | Ĝ2 = g1, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
· P
(
Ĝ2 = g1 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
·
←−
Pe1 ·

−→
Pe1 (12)

Since the events given in the probability terms above imply:

M̂1 6= m1 =⇒ g2 6= gc

M̂2 6= m2 =⇒ g1 6= gc,

We can rewrite (12) as:

P
(

No-Alarm; M̂1 6= m1; M̂2 6= m2 | M̂1 = m1, M̂2 = m2

)
≤ P

(
Ĝ1 = g2 | Ĝ2 = g1,

(
M̂1 6= m1 =⇒ g2 6= gc

)
,
(
M̂2 6= m2 =⇒ g1 6= gc

)
,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

· P
(
Ĝ2 = g1 |

(
M̂1 6= m1 =⇒ g2 6= gc

)
,
(
M̂2 6= m2 =⇒ g1 6= gc

)
,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

·
←−
Pe1 ·

−→
Pe1

≤
←−
Pe1 ·

−→
Pe1 (13)

Above, we upper bound the two first factors by 1 since given an error in both transmissions of the first stage, we have that
g1 6= gc and g2 6= gc (which does not mean that g1 = g2 since both decoders may have reach distinct decoding errors). When
these messages are fed back in the second stage, they may be decoded correctly or incorrectly, and since we cannot identify
the exact error occurred in the first stage, we simply (and may loosely) decided to upper bound these probabilities by one.
Note that any further analysis that may lead to tighter bounds can only improve the error exponent we derive here but upper
bounding this factors by one.

Next, considering the overall probability of error upper bound shown in (6), and the upper bound of both summing terms
(11) and (13), it follows that:

−→
Perr ≤

−→
Pe2 ·

←−
Pe2 ·

−→
Pe1 +

←−
Pe1 ·

−→
Pe1 .

An equivalent result can be obtained for the other direction:

P1←2
error = P

(
M̂2 6= m2; No-Alarm |M1 = m1,M2 = m2

)
= P

(
No-Alarm; M̂2 6= m2; M̂1 = m1 |M1 = m1,M2 = m2

)
+ P

(
No-Alarm; M̂2 6= m2; M̂1 6= m1 |M1 = m1,M2 = m2

)
(14)



Similarly, analyzing each term in the sum above separately, we have:

P
(

No-Alarm; M̂2 6= m2; M̂1 = m1 |M1 = m1,M2 = m2

)
= P

(
M̂1 = m1 |M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
−−→
Pe1
≤1

·P
(
M̂2 6= m2 | M̂1 = m1,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe1

· P
(

No-Alarm | M̂2 6= m2, M̂1 = m1,M1 = m1,M2 = m2

)
≤ P

(Ĝ1 = g2); (Ĝ2 = g1)︸ ︷︷ ︸
No-Alarm

| M̂2 6= m2, M̂1 = m1,M1 = m1,M2 = m2

 · ←−Pe1
= P

(
Ĝ2 = g1 | Ĝ1 = g2, M̂2 6= m2, M̂1 = m1,M1 = m1,M2 = m2

)
· P
(
Ĝ1 = g2 | M̂2 6= m2, M̂1 = m1,M1 = m1,M2 = m2

)
·
←−
Pe1 (15)

Then, recalling that:

M̂2 6= m2 =⇒ g1 6= gc

M̂1 = m1 =⇒ g2 = gc

It follows that (15):

P
(

No-Alarm; M̂2 6= m2; M̂1 = m1 |M1 = m1,M2 = m2

)
≤ P

(
Ĝ2 = g1 | Ĝ1 = g2,

(
M̂2 6= m2 =⇒ g1 6= gc

)
,
(
M̂1 = m1 =⇒ g2 = gc

)
,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe2

· P
(
Ĝ1 = g2 |

(
M̂2 6= m2 =⇒ g1 6= gc

)
,
(
M̂1 = m1 =⇒ g2 = gc

)
,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

−−→
Pe2

·
←−
Pe1

≤
←−
Pe2 ·

−→
Pe2 ·

←−
Pe1 (16)

Similarly, proceeding with the second term in the sum of (14):

P
(

No-Alarm; M̂2 6= m2; M̂1 6= m1 |M1 = m1,M2 = m2

)
= P

(
M̂1 6= m1 |M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe1

·P
(
M̂2 6= m2 | M̂1 6= m1,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe1

· P
(

No-Alarm | M̂2 6= m2, M̂1 6= m1,M1 = m1,M2 = m2

)
≤ P

(Ĝ1 = g2); (Ĝ2 = g1)︸ ︷︷ ︸
No-Alarm

| M̂2 6= m2, M̂1 6= m1,M1 = m1,M2 = m2

 · −→Pe1 · ←−Pe1
= P

(
Ĝ2 = g1 | Ĝ1 = g2, M̂2 6= m2, M̂1 6= m1,M1 = m1,M2 = m2

)
· P
(
Ĝ1 = g2 | M̂2 6= m2, M̂1 6= m1,M1 = m1,M2 = m2

)
·
−→
Pe1 ·

←−
Pe1 (17)

It follows that (17) can be written as:

P
(

No-Alarm; M̂2 6= m2; M̂1 6= m1 |M1 = m1,M2 = m2

)
≤ P

(
Ĝ2 = g1 | Ĝ1 = g2, M̂2 6= m2, M̂1 6= m1,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

· P
(
Ĝ1 = g2 | M̂2 6= m2, M̂1 6= m1,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

·
−→
Pe1 ·

←−
Pe1

≤
−→
Pe1 ·

←−
Pe1 (18)



Finally, taking (14), and replacing the corresponding upper bound for its two terms from (16) and (18), we have that an
upper bound on the overall probability of error in the 1← 2 direction is:

P1←2
error ≤

←−
Pe2 ·

−→
Pe2 ·

←−
Pe1 +

−→
Pe1 ·

←−
Pe1

We have obtained that under a per block expected block power constraint E
[

1
N

∑N
i=1X

2
i

]
≤ P , the probabilities of error

for both directions is:

P1→2
error ≤ max

{−→
Pe2
←−
Pe2
−→
Pe1 ,
−→
Pe1
←−
Pe1

}
(19)

P1←2
error ≤ max

{←−
Pe2
−→
Pe2
←−
Pe1 ,
←−
Pe1
−→
Pe1

}
(20)

2) Expected transmission time: A retrasmission occurs when an alarm is declared at any terminal, that is, when the
feedback message generated locally does not match that received from the other end. Thus the event alarm corresponds to:
{Alarm} = {(Ĝ2 6= g1) ∪ (Ĝ1 6= g2)}. This means that a retransmission happens with the probability of occurrence of this
event, which we denote by P(Rtx):

P(Rtx) = P (Alarm |M1 = m1,M2 = m2)

= P
(

(Ĝ2 6= g1) ∪ (Ĝ1 6= g2) |M1 = m1,M2 = m2

)
≤ P

(
Ĝ2 6= g1 |M1 = m1,M2 = m2

)
+ P (ĝ1 6= g2 |M1 = m1,M2 = m2) (21)

Next we upper bound each of the two terms above as follows. For the left hand side term of (21):

P
(
Ĝ2 6= g1 |M1 = m1,M2 = m2

)
= P

(
Ĝ2 6= g1, g1 = gc |M1 = m1,M2 = m2

)
+ P

(
Ĝ2 6= g1, g1 6= gc |M1 = m1,M2 = m2

)
(22)

We analyze each of the two terms of (22) separately, thus for the left term:

P
(
Ĝ2 6= g1, g1 = gc |M1 = m1,M2 = m2

)
= P

(
Ĝ2 6= g1 | g1 = gc,M1 = m1,M2 = m2

)
· P (g1 = gc |M1 = m1,M2 = m2)︸ ︷︷ ︸

=1−
←−−
Pe1
≤1

≤ P
(
Ĝ2 6= g1 | g1 = gc,M1 = m1,M2 = m2

)
= P

(
Ĝ2 6= gc; g2 = gc | g1 = gc,M1 = m1,M2 = m2

)
+ P

(
Ĝ2 6= gc; g2 6= gc | g1 = gc,M1 = m1,M2 = m2

)
= P

(
Ĝ2 6= gc | g2 = gc, g1 = gc,M1 = m1,M2 = m2

)
· P (g2 = gc | g1 = gc,M1 = m1,M2 = m2)

+ P
(
Ĝ2 6= gc | g2 6= gc, g1 = gc,M1 = m1,M2 = m2

)
· P (g2 6= gc | g1 = gc,M1 = m1,M2 = m2)

= P
(
Ĝ2 6= gc | g2 = gc, g1 = gc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe2

·P (g2 = gc | g1 = gc,M1 = m1,M2 = m2)︸ ︷︷ ︸
=1−

−−→
Pe1
≤1

+ P
(
Ĝ2 6= gc | g2 6= gc, g1 = gc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

·P (g2 6= gc | g1 = gc,M1 = m1,M2 = m2)︸ ︷︷ ︸
≤
−−→
Pe1

≤
←−
Pe2 +

−→
Pe1 (23)



Now, we proceed with the right hand side term of (22):

P
(
Ĝ2 6= g1, g1 6= gc |M1 = m1,M2 = m2

)
= P

(
Ĝ2 6= g1 | g1 6= gc,M1 = m1,M2 = m2

)
· P (g1 6= gc |M1 = m1,M2 = m2)︸ ︷︷ ︸

≤
←−−
Pe1

≤ P
(
Ĝ2 6= g1 | g1 6= gc,M1 = m1,M2 = m2

)
·
←−
Pe1

=
[
P
(
Ĝ2 6= g1; g2 = gc | g1 6= gc,M1 = m1,M2 = m2

)
+ P

(
Ĝ2 6= g1; g2 6= gc | g1 6= gc,M1 = m1,M2 = m2

)]
·
←−
Pe1

= P
(
Ĝ2 6= g1 | g2 = gc, g1 6= gc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

·P (g2 = gc | g1 6= gc,M1 = m1,M2 = m2)︸ ︷︷ ︸
=1−

−−→
Pe1≤1

·
←−
Pe1

+ P
(
Ĝ2 6= g1 | g2 6= gc, g1 6= gc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

·P (g2 6= gc | g1 6= gc,M1 = m1,M2 = m2)︸ ︷︷ ︸
≤
−−→
Pe1

·
←−
Pe1

≤
←−
Pe1 +

−→
Pe1 ·

←−
Pe1 (24)

Thus, we have from (22), (23) and (24):

P
(
Ĝ2 6= g1 |M1 = m1,M2 = m2

)
≤
(←−
Pe2 +

−→
Pe1

)
+
(←−
Pe1 +

−→
Pe1 ·

←−
Pe1

)

We now proceed in a similar way for the right hand side term of (21):

P
(
Ĝ1 6= g2 |M1 = m1,M2 = m2

)
= P

(
Ĝ1 6= g2; g2 = gc |M1 = m1,M2 = m2

)
+ P

(
Ĝ1 6= g2; g2 6= gc |M1 = m1,M2 = m2

)
(25)

We analyze each of the terms summing up in (25) separately, thus for the left hand side term:

P
(
Ĝ1 6= g2; g2 = gc |M1 = m1,M2 = m2

)
= P

(
Ĝ1 6= g2 | g2 = gc,M1 = m1,M2 = m2

)
· P (g2 = gc |M1 = m1,M2 = m2)︸ ︷︷ ︸

=1−
−−→
Pe1
≤1

≤ P
(
Ĝ1 6= g2 | g2 = gc,M1 = m1,M2 = m2

)
= P

(
Ĝ1 6= g2; g1 = gc | g2 = gc,M1 = m1,M2 = m2

)
+ P

(
Ĝ1 6= g2; g1 6= gc | g2 = gc,M1 = m1,M2 = m2

)
= P

(
Ĝ1 6= g2 | g1 = gc, g2 = gc,M1 = m1,M2 = m2

)
· P (g1 = gc | g2 = gc,M1 = m1,M2 = m2)

+ P
(
Ĝ1 6= g2 | g1 6= gc, g2 = gc,M1 = m1,M2 = m2

)
· P (g1 6= gc | g2 = gc,M1 = m1,M2 = m2)

= P
(
Ĝ1 6= g2 | g1 = gc, g2 = gc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe2

·P (g1 = gc | g2 = gc,M1 = m1,M2 = m2)︸ ︷︷ ︸
=1−

←−−
Pe1
≤1

+ P
(
Ĝ1 6= g2 | g1 6= gc, g2 = gc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

·P (g1 6= gc | g2 = gc,M1 = m1,M2 = m2)︸ ︷︷ ︸
≤
←−−
Pe1

≤
−→
Pe2 +

←−
Pe1 (26)



Similarly for the right hand side term of (25):

P
(
Ĝ1 6= g2; g2 6= gc |M1 = m1,M2 = m2

)
= P

(
Ĝ1 6= g2 | g2 6= gc,M1 = m1,M2 = m2

)
· P (g2 6= gc |M1 = m1,M2 = m2)︸ ︷︷ ︸

≤
−−→
Pe1

≤ P
(
Ĝ1 6= g2 | g2 6= gc,M1 = m1,M2 = m2

)
·
−→
Pe1

=
[
P
(
Ĝ1 6= g2; g1 = gc | g2 6= gc,M1 = m1,M2 = m2

)
+ P

(
Ĝ1 6= g2; g1 6= gc | g2 6= gc,M1 = m1,M2 = m2

)]
·
−→
Pe1

= P
(
Ĝ1 6= g2 | g1 = gc, g2 6= gc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

·P (g1 = gc | g2 6= gc,M1 = m1,M2 = m2)︸ ︷︷ ︸
=1−

←−−
Pe1
≤1

·
−→
Pe1

+ P
(
Ĝ1 6= g2 | g1 6= gc, g2 6= gc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

·P (g1 6= gc | g2 6= gc,M1 = m1,M2 = m2)︸ ︷︷ ︸
≤
←−−
Pe1

·
−→
Pe1

≤
−→
Pe1 +

←−
Pe1 ·

−→
Pe1 (27)

Finally, taking (25), (26) and (27), we obtain:

P
(
Ĝ1 6= g2 |M1 = m1,M2 = m2

)
≤
(−→
Pe2 +

←−
Pe1

)
+
(−→
Pe1 +

←−
Pe1 ·

−→
Pe1

)
Thus, from (21) we see that the probability of alarm is given by:

P(Rtx) ≤ P
(
Ĝ2 6= g1 |M1 = m1,M2 = m2

)
+ P

(
Ĝ1 6= g2 |M1 = m1,M2 = m2

)
≤
(←−
Pe2 +

−→
Pe1

)
+
(←−
Pe1 +

−→
Pe1 ·

←−
Pe1

)
+
(−→
Pe2 +

←−
Pe1

)
+
(−→
Pe1 +

←−
Pe1 ·

−→
Pe1

)
=
←−
Pe2 + 2 ·

−→
Pe1 + 2 ·

−→
Pe1 ·

←−
Pe1 + 2 ·

←−
Pe1 +

−→
Pe2 (28)

Note from (28) that P(Rtx) → 0 as the block length N → ∞. This occurs since each of the summing terms in (28) decays
exponentially as N → ∞. It follows that the expected transmission time is determined by the probability of retransmission,
given as:

E[∆] = N · [P(Rtx)]
0

+N · [P(Rtx)]
1

+ · · ·+N · [P(Rtx)]
∞

= N ·
∞∑
k=0

·P(Rtx)k = N · 1

1− P(Rtx)

Thus, E[∆] ≈ N when P(Rtx)→ 0.

3) Error exponents: Finally, the error exponent in Theorem 1 can be obtained using (19) and (20), and the expected
transmission time derived above.



APPENDIX B
PROOF OF THEOREM 2

This section consider the case in which the feedback message transmission utilizes a hashing compression method.

1) Probability of error analysis::

P1→2
err = P

(
M̂1 6= m1; No-Alarm |M1 = m1,M2 = m2

)
= P

(
No-Alarm; M̂1 6= m1; M̂2 = m2 |M1 = m1,M2 = m2

)
+ P

(
No-Alarm; M̂1 6= m1; M̂2 6= m2 |M1 = m1,M2 = m2

)
(29)

Note that when compression is used, the event {No-Alarm} ≡ {( ˆ̄G1 = ḡ2) ∩ ( ˆ̄G2 = ḡ1)}, where we have used the bin
indexes (or hashing). The notation using a bar on top of a variable, such as in ḡi, refers to index of the bin that contains
message gi. When this is sent to the other terminal (3 − i), it is estimated as ˆ̄Gi. We analyze each term of the summation
above as follows.

For the left hand side of (29), the following holds:
• (M̂2 = m2) =⇒ g1 = gc: Since g1 corresponds to the correct feedback message, it is assigned to the correct bin, whose

index is transmitted to terminal 2 in the feedback stage over the 1→ 2 noisy channel.
• (M̂1 6= m1) =⇒ g2 6= gc: The transmission error in the first stage causes that g2 is not the correct feedback message.

When this message is assigned to a bin, it may either be: wrongly assigned to the same bin as the correct message gc
which we denote as a hash-collision; or, assigned to a bin different from the one holding the correct feedback message
gc. The probability of a hash-collision is ph = 1

2NRFB
.

P
(

No-Alarm; M̂1 6= m1; M̂2 = m2 |M1 = m1,M2 = m2

)
= P

(
M̂2 = m2 |M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
←−−
Pe1
≤1

·P
(
M̂1 6= m1 | M̂2 = m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe1

· P
(

No-Alarm | M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
≤ P

(
No-Alarm; No Hash-Collision T2 | M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
·
−→
Pe1

+ P
(

No-Alarm; Hash-Collision T2 | M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
·
−→
Pe1

= P
(

No-Alarm | No Hash-Collision T2, M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
· P
(

No Hash-Collision T2 | M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−ph≤1

·
−→
Pe1

+ P
(

No-Alarm | Hash-Collision T2 | M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
· P
(

Hash-Collision T2 | M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=ph

·
−→
Pe1

= P
(

No-Alarm | No Hash-Collision T2, M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
·
−→
Pe1

+ P
(

No-Alarm | Hash-Collision T2, M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
· ph ·

−→
Pe1

= P

( ˆ̄G1 = ḡ2); ( ˆ̄G2 = ḡ1)︸ ︷︷ ︸
No-Alarm

| No Hash-Collision T2, M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

 · −→Pe1
+ P

( ˆ̄G1 = ḡ2); ( ˆ̄G2 = ḡ1)︸ ︷︷ ︸
No-Alarm

| Hash-Collision T2, M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

 · ph · −→Pe1
= P

(
ˆ̄G1 = ḡ2 | ˆ̄G2 = ḡ1,No Hash-Collision T2, M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe2

·
−→
Pe1



· P
(

ˆ̄G2 = ḡ1 | No Hash-Collision T2, M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe2

+ P
(

ˆ̄G1 = ḡ2 | ˆ̄g2 = ḡ1,Hash-Collision T2, M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
−−→
Pe2
≤1

·ph ·
−→
Pe1

· P
(

ˆ̄G2 = ḡ1 | Hash-Collision T2, M̂1 6= m1, M̂2 = m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
←−−
Pe2
≤1

(30)

≤
−→
Pe2 ·

−→
Pe1 ·

←−
Pe2 + ph ·

−→
Pe1 (31)

For the first line of (30), we have that given g2 6= gc and since there is no hash-collision, thus ḡ2 6= ḡc. Then, since g1 = gc,
we also have that ḡ1 = ḡc is sent as the feedback message, and this term is upper bounded by the probability of error in the
feedback stage. This upper bound results since this term indicates the error of decoding the feedback message as ḡc. For the
second line, similarly, ḡ2 6= ḡc is sent, and since ḡ1 = ḡc, then the probability of this event is upper bounded by the probability
of error in the feedback stage. The third line, the hash collision causes that ḡ2 = ḡc, thus, since ḡ1 = ḡc is sent, then the
probability of this event is can be upper bounded by one. Finally, in the fourth line, the hash-collision causes ḡ2 = ḡc is sent.
Then, since ḡ1 = ḡc, this probability is upper bounded also by one.

Observe that (31) corresponds to the term (11) plus an additional term that results from a hashing error.

Next, for the right hand side of (29), the following holds:
• (M̂2 6= m2) =⇒ g1 6= gc: The transmission error in the first stage causes that g1 is not the correct feedback message.

When this message is assigned to a bin, it may either be: wrongly assigned to the same bin as the correct message gc
which we denoted as a hash-collision; or, assigned to a bin different from the one holding the correct feedback message
gc. The probability of a hash-collision is ph = 1

2NRFB
.

• (M̂1 6= m1) =⇒ g2 6= gc: The transmission error in the first stage causes that g2 is not the correct feedback message.
When this message is assigned to a bin, it may either be: wrongly assigned to the same bin as the correct message gc
which we denoted as a hash-collision; or, assigned to a bin different from the one holding the correct feedback message
gc. The probability of a hash-collision is ph = 1

2NRFB
.

P
(

No-Alarm; M̂1 6= m1; M̂2 6= m2 |M1 = m1,M2 = m2

)
= P

(
M̂2 6= m2 |M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe1

·P
(
M̂1 6= m1 | M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe1

· P
(

No-Alarm | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
≤ P

(
No-Alarm | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
·
←−
Pe1 ·

−→
Pe1

= P
(

No-Alarm; No Hash-Col T1; No Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
·
←−
Pe1 ·

−→
Pe1

+ P
(

No-Alarm; No Hash-Col T1; Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
·
←−
Pe1 ·

−→
Pe1

+ P
(

No-Alarm; Hash-Col T1; No Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
·
←−
Pe1 ·

−→
Pe1

+ P
(

No-Alarm; Hash-Col T1; Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
·
←−
Pe1 ·

−→
Pe1 (32)

We analyze each of the four terms with events described in parenthesis from (32) as follows. Then, for the first term:

P
(

No-Alarm; No Hash-Col T1; No Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
= P

(
No Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−ph≤1

· P
(

No Hash-Col T1 | No Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−ph≤1



· P
(

No-Alarm | No Hash-Col T1, No Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
≤ P

( ˆ̄G1 = ḡ2); ( ˆ̄G2 = ḡ1)︸ ︷︷ ︸
No-Alarm

| No Hash-Col T1, No Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2


= P

(
ˆ̄G1 = ḡ2 | ˆ̄G2 = ḡ1, No Hash-Col T1, No Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

· P
(

ˆ̄G2 = ḡ1 | No Hash-Col T1, No Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

≤ 1 (33)

The upper bounds in (33) result since ḡ1 6= ḡc and ḡ2 6= ḡc are sent as the corresponding feedback messages, and they could
be either decoded correctly or incorrectly, so we opted by simply upper bound them by one. Note that a more precise analysis
that could be performed in these terms can only improve our results.

For the second term in (32) we have:

P
(

No-Alarm; No Hash-Col T1; Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
= P

(
Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=ph

· P
(

No Hash-Col T1 | Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−ph≤1

· P
(

No-Alarm | No Hash-Col T1, Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
≤ P

( ˆ̄G1 = ḡ2); ( ˆ̄G2 = ḡ1)︸ ︷︷ ︸
No-Alarm

| No Hash-Col T1, Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

 · ph
= P

(
ˆ̄G1 = ḡ2 | ˆ̄G2 = ḡ1, No Hash-Col T1, Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe2

· P
(

ˆ̄G2 = ḡ1 | No Hash-Col T1, Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe2

·ph

≤
−→
Pe2 ·

←−
Pe2 · ph

Note that since g1 6= gc, the event “No Hash-Col” T1 implies that ḡ1 6= ḡc. Moreover, since g2 6= gc the event “Hash-Col” T2

implies that ḡ2 = ḡc.

For the third term in (32) we have:

P
(

No-Alarm; Hash-Col T1; No Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
= P

(
No Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−ph≤1

· P
(

Hash-Col T1 | No Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=ph

· P
(

No-Alarm | Hash-Col T1,No Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
≤ P

( ˆ̄G1 = ḡ2); ( ˆ̄G2 = ḡ1)︸ ︷︷ ︸
No-Alarm

| Hash-Col T1, No Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

 · ph
= P

(
ˆ̄G2 = ḡ1 | Hash-Col T1, No Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe2



· P
(

ˆ̄G1 = ḡ2 | ˆ̄G2 = ḡ1, Hash-Col T1, No Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe2

·ph

≤
←−
Pe2 ·

−→
Pe2 · ph

Since g1 6= gc, the event “Hash-Col” T1 implies that ḡ1 = ḡc. Moreover, since g2 6= gc the event “No Hash-Col” T2 implies
that ḡ2 6= ḡc.

Finally, for the last term in (32) we have:

P
(

No-Alarm; Hash-Col T1; Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
= P

(
Hash-Col T2 | M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=ph

· P
(

Hash-Col T1 | Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=ph

· P
(

No-Alarm | Hash-Col T1, Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
≤ P

( ˆ̄G1 = ḡ2); ( ˆ̄G2 = ḡ1)︸ ︷︷ ︸
No-Alarm

| Hash-Col T1, Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

 · ph · ph
= P

(
ˆ̄G1 = ḡ2 | ˆ̄G2 = ḡ1, Hash-Col T1, Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
−−→
Pe2
≤1

· P
(

ˆ̄G2 = ḡ1 | Hash-Col T1, Hash-Col T2, M̂1 6= m1, M̂2 6= m2,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
←−−
Pe2≤1

·ph · ph

≤ ph · ph

Since there are hash-collisions at both terminals: we have that g1 6= gc and the event “Hash-Col” T1 implies that ḡ1 = ḡc.
Moreover, since g2 6= gc the event “Hash-Col” T2 implies that ḡ2 = ḡc.

It follows from (32) that:

P
(

No-Alarm; M̂1 6= m1; M̂2 6= m2 |M1 = m1,M2 = m2

)
≤
←−
Pe1 ·

−→
Pe1︸ ︷︷ ︸

Dominant term

+
←−
Pe1 ·

−→
Pe1 ·

−→
Pe2 ·

←−
Pe2 · ph +

←−
Pe1 ·

−→
Pe1 ·

←−
Pe2 ·

−→
Pe2 ·h +

←−
Pe1 ·

−→
Pe1 · ph · ph

.
=
←−
Pe1 ·

−→
Pe1 (34)

Hence, from (29), (31) and (34) we obtain:

P1→2
error = P

(
M̂1 6= m1,No-Alarm |M1 = m1,M2 = m2

)
≤
−→
Pe2 ·

−→
Pe1 ·

←−
Pe2 + ph ·

−→
Pe1 +

←−
Pe1 ·

−→
Pe1

P1←2
error = P

(
M̂1 6= m1,No-Alarm |M1 = m1,M2 = m2

)
≤
←−
Pe2 ·

←−
Pe1 ·

−→
Pe2 + ph ·

←−
Pe1 +

−→
Pe1 ·

←−
Pe1 ,

where results for the other direction follow by symmetry.



2) Transmission time under compressed feedback: A retrasmission occurs when an alarm is declared at any of both terminals,
that is, when the feedback stage result does not match the result of the first stage. Thus the event alarm corresponds to:
{Alarm} = {( ˆ̄G2 6= ḡ1) ∪ ( ˆ̄G1 6= ḡ2)}. This means that a retransmission happens with the probability of occurrence of this
event, which we denote by P(Rtx):

P(Rtx) = P (Alarm |M1 = m1,M2 = m2)

= P
(

( ˆ̄G2 6= ḡ1) ∪ ( ˆ̄G1 6= ḡ2) |M1 = m1,M2 = m2

)
≤ P

(
ˆ̄G2 6= ḡ1 |M1 = m1,M2 = m2

)
+ P

(
ˆ̄G1 6= ḡ2 |M1 = m1,M2 = m2

)
(35)

In the following, we denote the bin index corresponding to the correct message as ḡc. We consider each term of (35) as follows,
for the right hand side term:

P
(

ˆ̄G1 6= ḡ2 |M1 = m1,M2 = m2

)
= P

(
ˆ̄G1 6= ḡ2; ḡ2 = ḡc |M1 = m1,M2 = m2

)
+ P

(
ˆ̄G1 6= ḡ2; ḡ2 6= ḡc |M1 = m1,M2 = m2

)
= P

(
ˆ̄G1 6= ḡ2 | ḡ2 = ḡc,M1 = m1,M2 = m2

)
· P (ḡ2 = ḡc |M1 = m1,M2 = m2)

+ P
(

ˆ̄G1 6= ḡ2 | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
· P (ḡ2 6= ḡc |M1 = m1,M2 = m2)

=
[
P
(

ˆ̄G1 6= ḡ2; ḡ1 = ḡc | ḡ2 = ḡc,M1 = m1,M2 = m2

)
+ P

(
ˆ̄G1 6= ḡ2; ḡ1 6= ḡc | ḡ2 = ḡc,M1 = m1,M2 = m2

)]
·
[
P
(
ḡ2 = ḡc; M̂1 = m1 |M1 = m1,M2 = m2

)
+ P

(
ḡ2 = ḡc; M̂1 6= m1 |M1 = m1,M2 = m2

)]
+
[
P
(

ˆ̄G1 6= ḡ2; ḡ1 = ḡc | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
+ P

(
ˆ̄G1 6= ḡ2; ḡ1 6= ḡc | ḡ2 6= ḡc,M1 = m1,M2 = m2

)]
·
[
P
(
ḡ2 6= ḡc; M̂1 = m1 |M1 = m1,M2 = m2

)
+ P

(
ḡ2 6= ḡc; M̂1 6= m1 |M1 = m1,M2 = m2

)]
(36)

Each of terms in (36) can be upper bounded as:

P
(

ˆ̄G1 6= ḡ2; ḡ1 = ḡc | ḡ2 = ḡc,M1 = m1,M2 = m2

)
= P

(
ˆ̄G1 6= ḡ2 | ḡ1 = ḡc, ḡ2 = ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe2

·P (ḡ1 = ḡc | ḡ2 = ḡc,M1 = m1,M2 = m2)

≤
−→
Pe2 ·

[
P
(
ḡ1 = ḡc; M̂2 = m2 | ḡ2 = ḡc,M1 = m1,M2 = m2

)
+ P

(
ḡ1 = ḡc; M̂2 6= m2 | ḡ2 = ḡc,M1 = m1,M2 = m2

)]

=
−→
Pe2 ·

P(ḡ1 = ḡc | M̂2 = m2, ḡ2 = ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−ph≤1

·P
(
M̂2 = m2 | ḡ2 = ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
←−−
Pe1≤1

+P
(
ḡ1 = ḡc | M̂2 6= m2, ḡ2 = ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=ph

·P
(
M̂2 6= m2 | ḡ2 = ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe1


≤
−→
Pe2

(
1 + ph

←−
Pe1

)
(37)

P
(

ˆ̄G1 6= ḡ2; ḡ1 6= ḡc | ḡ2 = ḡc,M1 = m1,M2 = m2

)
= P

(
ˆ̄G1 6= ḡ2 | ḡ1 6= ḡc, ḡ2 = ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

·P (ḡ1 6= ḡc | ḡ2 = ḡc,M1 = m1,M2 = m2)

≤ P
(
ḡ1 6= ḡc; M̂2 = m2 | ḡ2 = ḡc,M1 = m1,M2 = m2

)
+ P

(
ḡ1 6= ḡc; M̂2 6= m2 | ḡ2 = ḡc,M1 = m1,M2 = m2

)



= P
(
ḡ1 6= ḡc | M̂2 = m2, ḡ2 = ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=0

·P
(
M̂2 = m2 | ḡ2 = ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
←−−
Pe1≤1

+ P
(
ḡ1 6= ḡc | M̂2 6= m2, ḡ2 = ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−ph≤1

·P
(
M̂2 6= m2 | ḡ2 = ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe1

≤
←−
Pe1

P
(
ḡ2 = ḡc; M̂1 = m1 |M1 = m1,M2 = m2

)
= P

(
ḡ2 = ḡc | M̂1 = m1,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−ph≤1

·P
(
M̂1 = m1 |M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
−−→
Pe1
≤1

≤ 1

P
(
ḡ2 = ḡc; M̂1 6= m1 |M1 = m1,M2 = m2

)
= P

(
ḡ2 = ḡc | M̂1 6= m1,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=ph

·P
(
M̂1 6= m1 |M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe1

≤ ph
−→
Pe1

P
(

ˆ̄G1 6= ḡ2; ḡ1 = ḡc | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
= P

(
ˆ̄G1 6= ḡ2 | ḡ1 = ḡc, ḡ2 6= ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

·P (ḡ1 = ḡc | ḡ2 6= ḡc,M1 = m1,M2 = m2)

≤ P
(
ḡ1 = ḡc; M̂2 = m2 | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
+ P

(
ḡ1 = ḡc; M̂2 6= m2 | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
= P

(
ḡ1 = ḡc | M̂2 = m2, ḡ2 6= ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1

·P
(
M̂2 = m2 | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
←−−
Pe1
≤1

+ P
(
ḡ1 = ḡc | M̂2 6= m2, ḡ2 6= ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=ph

·P
(
M̂2 6= m2 | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe1

≤ 1 + ph
←−
Pe1

P
(

ˆ̄G1 6= ḡ2; ḡ1 6= ḡc | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
= P

(
ˆ̄G1 6= ḡ2 | ḡ1 6= ḡc, ḡ2 6= ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤1

·P (ḡ1 6= ḡc | ḡ2 6= ḡc,M1 = m1,M2 = m2)

≤ P
(
ḡ1 6= ḡc; M̂2 = m2 | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
+ P

(
ḡ1 6= ḡc; M̂2 6= m2 | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
= P

(
ḡ1 6= ḡc | M̂2 = m2, ḡ2 6= ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=0

·P
(
M̂2 = m2 | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
←−−
Pe1
≤1

+ P
(
ḡ1 6= ḡc | M̂2 6= m2, ḡ2 6= ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−ph≤1

·P
(
M̂2 6= m2 | ḡ2 6= ḡc,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
←−−
Pe1

≤
←−
Pe1



P
(
ḡ2 6= ḡc; M̂1 = m1 |M1 = m1,M2 = m2

)
= P

(
ḡ2 6= ḡc | M̂1 = m1,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=0

·P
(
M̂1 = m1 |M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−
−−→
Pe1
≤1

= 0

P
(
ḡ2 6= ḡc; M̂1 6= m1 |M1 = m1,M2 = m2

)
= P

(
ḡ2 6= ḡc | M̂1 6= m1,M1 = m1,M2 = m2

)
︸ ︷︷ ︸

=1−ph≤1

·P
(
M̂1 6= m1 |M1 = m1,M2 = m2

)
︸ ︷︷ ︸

≤
−−→
Pe1

≤
−→
Pe1 (38)

Next, plugging the upper bounds from (37)-(38) into (35), we obtain:

P
(

ˆ̄G1 6= ḡ2 |M1 = m1,M2 = m2

)
=
[−→
Pe2

(
1 + ph

←−
Pe1

)
+
←−
Pe1

]
·
[
1 + ph

−→
Pe1

]
+
[
1 + ph

←−
Pe1 +

←−
Pe1

]
·
−→
Pe1 (39)

Next for the left hand side of (35), we have equivalently:

P
(

ˆ̄G1 6= ḡ2 |M1 = m1,M2 = m2

)
=
[←−
Pe2

(
1 + ph

−→
Pe1

)
+
−→
Pe1

]
·
[
1 + ph

←−
Pe1

]
+
[
1 + ph

−→
Pe1 +

−→
Pe1

]
·
←−
Pe1 (40)

Note that since each term in (39) and (40) decay exponentially as N → ∞. Hence, we have from (35) that P(Rtx) → 0 as
N →∞.


