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Achievable Error Exponents of One-Way and
Two-Way AWGN Channels
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Abstract—Achievable error exponents for the one-way with
noisy feedback and two-way AWGN channels are derived for the
transmission of a finite number of messages M under almost sure
(AS) and expected block (EXP) transmit power constraints. In
the one-way setting under noisy AWGN feedback, under an AS
power constraint, known linear and non-linear passive schemes
are modified to incorporate AS constraints in the feedback link
as well. In addition, a new active feedback scheme is presented in
which the receiver feeds back the most likely pair of codewords,
and the transmitter re-transmits which of these two was originally
sent. This active feedback scheme outperforms one of the passive
feedback schemes for all channel parameters; the linear scheme
outperforms the others for low feedback noise variance. Under
the EXP constraint, a known achievable error exponent for the
transmission of two messages is generalized to any arbitrary but
finite number of messages M through the use of simplex codes
and erasure decoding. In the two-way AWGN setting, each user
has its own message to send in addition to (possibly) aiding in
the transmission of feedback for the opposite direction. Two-
way error exponent regions are defined and achievable error
exponent regions are derived for the first time under both AS
and EXP power constraints. For the presented achievability
schemes, feedback or interaction leads to error exponent gains
in one direction, possibly at the expense of a decrease in the
error exponents attained in the other direction. The relationship
between M and n supported by our achievable strategies is
explored.

Index Terms—AWGN channel, two-way AWGN channel, error
exponents, noisy feedback, zero-rate, error exponents region.

I. INTRODUCTION

The reliability function [1]–[3], or error exponent, of a one-
way channel characterizes the rate of decay of the probability
of error when communicating one of 2nR messages as

E(R) = lim
n→∞

− 1

n
logP(n)

e ,

where P
(n)
e is the smallest probability of error that can be

achieved by a code of rate R with block length n. Error
exponents have been the subject of intense interest in both
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the absence [3], [4] and presence of feedback. If feedback is
available, the transmitter is given access to a (possibly noisy,
possibly encoded) function of the received output, that may
dramatically increase the error exponents of one-way channels
relative to when feedback is absent. Error exponents with ideal,
noiseless, feedback have been considered for discrete mem-
oryless channels (DMC) by Berlekamp [5] and for AWGN
channels by Pinsker [6]. While even perfect feedback cannot
increase the capacity of non-anticipatory DMC channels [7],
it may greatly improve the error exponents achieved. This
was first demonstrated for the AWGN channel under the EXP
power constraint in [8], in which the probability of error was
made to decay double-exponentially in the block length n;
[9] later demonstrated a decay rate equal to any number of
exponential levels. In recent years, it has been shown that even
noisy feedback is useful in improving error exponents (though
less dramatically), with a limited number of available results.
In this article we continue this line of work and study error
exponents of one-way additive white Gaussian noise (AWGN)
channels with noisy AWGN feedback for the transmission of
a finite number of messages (zero-rate).

We also extend the study of error exponents to the two-way
channel, where two terminals exchange independent messages.
Each transmitter’s encoding function is adaptive or interactive,
meaning that at time k it is a function of the message and
the past available channel outputs. The capacity region of
the two-way AWGN channel (with independent noise across
terminals) is a rectangular region where both users may
simultaneously attain their interference-free AWGN capacity,
reflecting that adaptation at the transmitters is useless from
a capacity perspective. Here we show that the same may not
be said about error exponent regions: that is, adaptation does
improve the error exponents of this two-way AWGN channel
for the transmission of a finite number of messages. This is
the first study of two-way error exponents to the best of our
knowledge. This finite message regime is of initial interest
as the exact error exponent for the one-way channel with
noisy feedback is still open in this regime. Error exponents for
positive rates are left for future work, and may extend existing
work such as [8], [10]–[14]. We also initially study error
exponents for block-coding-based codes rather than variable-
length codes, as studied in [15]–[17] and the references therein
for DMCs. This resolves synchronization issues that manifest
when feedback is noisy and transmission is variable-length.

Error exponents of AWGN channels are sensitive to the
type of power constraint imposed on the channel inputs and
feedback. In this work, we consider two constraints, defined
as the
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• Almost sure (AS) power constraint:

P

(
n∑
k=1

X2
i,k ≤ nPi

)
= 1 (1)

• Expected block (EXP) power constraint:

E

[
n∑
k=1

X2
i,k

]
≤ nPi. (2)

In (1) and (2), Xi,k corresponds to the k-th channel input
of user i with power constraint Pi. The EXP constraint is
less stringent than the AS constraint, and allows very high
amplitude transmissions to occur with exponentially small
probability. These rare events may correspond to decoding
errors, and transmissions may be used to correct such errors,
increasing achievable error exponents. The authors of [13]
comment that this “trick” can not be used for general DMCs,
but is useful for continuous-valued channels characterized by
additive noise.

A. Summary of Contributions
We present results on the one-way and two-way AWGN

channel error exponents under both the AS and EXP power
constraints. Our contributions are as follows.
For the one-way AWGN channel with noisy AWGN feedback:

1) Theorems 1 and 2 each present an achievable error
exponent for the one-way channel with AS constraints in
both the forward and feedback links for a finite number
of messages M ≥ 3. Having power constraints in both
directions is motivated by practical constraints, and to be
suitable for the two-way channel. Theorem 1 is based
on a modification of the non-linear coding scheme with
an AS power constraint in the forward direction and
passive (not power constrained) noisy feedback of [18,
Theorem 1]. This modification scales the feedback signal
to ensure that the feedback AS power constraint is met,
and is shown in Appendix A. In Theorem 2, we propose
a new active feedback scheme, proven in Section IV and
extended for larger M in Appendix B. The resulting error
exponent is shown to always outperform the modified
non-linear passive feedback scheme of Theorem 1, and
to lead to gains over the feedback-free exponent for a
strong feedback link. This gains are due to feeding back
the most likely pair of received codewords in an encoded
fashion, using a simplex code.

2) Theorem 3 presents another achievable error exponent
for the one-way channel with AS constraints in both
the forward and feedback links for a finite number of
messages M ≥ 2 . This a modification of the linear
passive feedback coding scheme (not power constrained
in the feedback link) presented in [18, Theorem 2], in
which the AS constraint is now imposed in the feedback
direction as well. Its proof is summarized in Appendix
C. This linear passive feedback scheme outperforms the
exponents achieved in Theorems 1 and 2 for very high
signal to noise ratios (SNR) in the feedback link.

3) Theorem 4 presents an achievable error exponent for
the one-way channel with EXP constraints in both the

forward and feedback links for a finite number of mes-
sages M . This is a generalization of the Kim-Lapidoth-
Weissman [19] achievable error exponent for the trans-
mission of two messages to the transmission of any finite
number of messages M ≥ 2. This extension, proven in
Section V, is based on the use of simplex codes, active
feedback, and a geometric approach based on erasure
decoding and “NACK bands / volumes”.

For the two-way AWGN channel:
5) Theorems 5, 6 and 7 demonstrate – for the first time

– achievable error exponent regions for the two-way
AWGN channel under the AS power constraint, provided
that one channel’s SNR is better than the other. This
non-symmetric SNR scenario is of interest since for the
one-way AWGN channel under the AS constraint, only
a feedback link significantly stronger than the forward
has been shown to lead to error exponent gains over
feedback-free transmissions. These results follow as a
direct application of Theorem 2 for active feedback and
Theorems 1 and 3 for passive feedback.

6) Theorem 8 demonstrates – again for the first time – an
achievable error exponent region for the two-way channel
under EXP power constraints in both directions. This
result follows from direct application of time / power
sharing of the scheme introduced in Theorem 4 in each
direction. In contrast to the results under AS constraints,
the regions here are valid for all SNRs in each direction.

The achievable error exponents for the transmission of a
finite number of messages M are based on the use of a
simplex code for the non-feedback transmissions. The use of
simplex codes allows for a geometry-based upper bound on the
probability of error that can be visualized for a small number
of messages (M = 3) and extended to any finite M ≥ 3.
Under the EXP constraint, some feedback and retransmission
signals occurring with exponentially small probability employ
very high amplitude signals to ensure an exceedingly small
probability of error.

B. Article outline

The remainder of this article is organized as follows. Section
II presents a summary of known error exponents for the One-
Way and Two-Way AWGN channels. Section III presents our
findings: In Subsection III-A we present new achievable error
exponents for the one-way AWGN channel in Theorems 1, 2,
3, and 4. In Subsection III-B, we present Theorems 5, 6, 7
and 8 as the main contributions, which follow from the one-
way results. A short discussion on outer bounds is presented
in Subsection III-C. The proofs of Theorems 2 and 4 for the
one-way channel and the transmission of three messages are
shown respectively in Sections IV and V, and later extended to
general M ≥ 3 in Appendices B and D. Section VI addresses
the relation between the number of messages M and the block
length n for our proposed schemes. Numerical simulations are
presented in Section VII. Section VIII concludes the paper.

Notation. We use Pw(x) to indicate the probability of any
event x conditioned on the transmission of message W = w,
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i.e. the probability of error given that W = 1 has been sent
is P(error|w = 1) = P1(error). The length of a sequence is
denoted using a superscript, i.e. xλni denotes that sequence x
lasts for λn channel uses. Subscript i indicates the terminal
that generated the sequence. Error exponents are denoted by E,
accompanied by a superscript to denote the forward direction
power constraint, and a subscript to denote the feedback
link power constraint, if applicable. We use E [·] to denote
the expectation operator. Random variables are upper case
letters, taking on instances in lower cases from alphabets in
calligraphic font (random variable X takes on x ∈ X ). We
use an

.
= bn to indicate that 1

n ln(anbn ) → 0 as n → ∞.
We use the terms terminal and user interchangeably. For one-
way channels, our definitions refer to systems with feedback;
definitions in the absence of feedback should be clear from
context and omission of the corresponding feedback-related
terms.

Achievable transmission schemes are based on simplex
codes denoted by C (ΩM , E) for the feedback-free transmission
of M messages ω ∈ ΩM := {1, · · · ,M}. This code consists
of a constellation of M data symbols Xn(ω), each of energy
E =

∑n
i=1Xi(ω)2, which are the vertices of an M -simplex

tetrahedron. As indicated in [18, Appendix], the codewords of
the simplex code C (ΩM , E) of length n are given by (3).
Note that the first M − 1 transmissions correspond to the
coordinates of the data symbols of the M -simplex, and the
remaining entries are zero. M−1 dimensions are thus required
to represent each symbol.

Xn(ω) = A

(
eω −

1

M

M∑
ω=1

eω

)
for ω ∈ {1, · · · ,M} (3)

where A =
√
E M
M−1 , with eω = (0, · · · , 0︸ ︷︷ ︸

ω−1

, 1, 0, · · · , 0).

II. ONE-WAY AND TWO-WAY AWGN CHANNELS: ERROR
EXPONENTS AT ZERO-RATE BACKGROUND

A. The one-way AWGN channel

x

u

Fig. 1. One-way AWGN channel with active feedback.

Figure 1 shows the one-way AWGN channel with active
feedback, where terminal 1 (T1 / transmitter) sends message
W , selected uniformly from the set W = {1, · · · ,M}, to
terminal 2 (T2 / receiver) using a code of block length
n. Both communication directions are independent channels
characterized by AWGN of zero mean and respective variances
σ2 and σ2

FB, identically distributed and independent across
users and channel uses. The channel model for the k-th time
slot is described by (4) and (5), with inputs subject to a

Ψ ∈ {AS,EXP} power constraint according to (1) and (2).
Noiseless feedback is captured by σ2

FB → 0. No feedback is
captured by σ2

FB →∞.

Yk = Xk +Nk, Nk ∼ N (0, σ2), k = 1, ..., n (4)

Zk = Uk +NFBk , NFBk ∼ N (0, σ2
FB), k = 1, ..., n. (5)

Let X ,Y,U ,Z all be the set of reals and(
M,P, σ2, PFB, σ

2
FB, n

)
be a code for the transmission

of M messages consisting of n forward and feedback
encoding functions1, xk : W × Zk−1 → X and
uk : Yk → U (for k = 1, ..., n), leading to channel
inputs Xk = xk

(
W,Zk−1

)
and Uk = uk

(
Y k
)
, and a

decoding rule φ : Yn → {1, · · · ,M} that determines the
best estimate of the transmitted message W , denoted by
Ŵ . Let PΨ

e

(
M,P, σ2, PFB, σ

2
FB, n

)
:= 1

M

∑M
w=1 Pr(φ(yn) 6=

w | W = w sent) denote the probability of error attained
by a particular

(
M,P, σ2, PFB, σ

2
FB, n

)
code under a

Ψ ∈ {AS,EXP} power constraint. We define the achievable
error exponent for the one-way AWGN channel with feedback
under the Ψ power constraint as:

EΨ
FB(M,P, σ2, PFB, σ

2
FB) :=

lim inf
n→∞

− 1

n
logPΨ

e

(
M,P, σ2, PFB, σ

2
FB, n

)
,

where the subscript FB indicates the presence of feedback and
is omitted for the non-feedback case, following the notation
of [19]. Literature involving rate-limited noiseless feedback
is beyond the scope of this work but important contributions
for the one-way AWGN channel can be found in [20], [21].
Contributions for multi-user settings not considered here, such
as the broadcast and interference Gaussian channels with
feedback can be found in [22]–[26]. Further results for the
positive rate regime for point-to-point channels can be found in
[11], [27], [28], while noisy feedback is studied in [29]. Error
exponents under the variable length coding (VLC) setting for
the AWGN channel with perfect feedback have been addressed
in [16], [30]–[32]; noisy feedback is considered in [17], [33].

Next, we present a review of error exponents results for
the one-way AWGN channel with noisy feedback and the
transmission of a finite number of messages:

1) Error exponents for the one-way AWGN channel
without feedback and with perfect output feedback: Error
exponents for the transmission of a finite number messages
without feedback and with perfect output feedback serve
as lower and upper bounds on those achievable with noisy
feedback. The feedback-free setting (σ2

FB → ∞) was studied
by Shannon [4], who showed that for the transmission of M
messages under the AS power constraint, the best achievable
error exponent is attainable using a simplex code and described
by (6):

EAS (M,P, σ2
)

=
P

σ2

M

4(M − 1)
. (6)

Note that EAS
(
2, P, σ2

)
= P

2σ2 , and EAS
(
3, P, σ2

)
= 3

8
P
σ2 ,

while for large M , EAS
(
M,P, σ2

)
≈ P

4σ2 . For the perfect-

1Note that the forward and backward encoding functions shown here as xk
and uk , are denoted in [19] as fk and gk respectively.
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feedback setting (σ2
FB → 0), Pinsker [6] showed that for M ≥

3 messages under the AS power constraint, the error exponent
can be improved up to:

EAS
FB

(
M,P, σ2, PFB, σ

2
FB = 0

)
=

P

2σ2
. (7)

Evaluating (6) for M = 2 leads to (7), hence no improvements
over the feedback-free error exponent are possible subject
to the AS power constraint for M = 2, even using perfect
feedback [34], [35]. Bound (7) also upper bounds the error
exponent under the AS constraint for the one-way AWGN
channel with noisy feedback.

2) Error exponents for the One-Way AWGN channel with
noisy feedback: Feedback over a noisy channel is called
passive when the forward channel output observed at the
receiver is directly sent to the source uncoded (perhaps scaled
to meet a power constraint) and active when the k-th feedback
channel input is a function uk (see Figure 1) of the received
outputs up until time k, i.e. Uk = uk(Y k). To mimic passive
feedback, uk can be modeled as a one-to-one scaling of signal
Yk. Thus feedback provides a noisy version of the observed
forward channel outputs Zk = Ỹk.

Error exponents under passive feedback: Yamamoto and
Burnashev obtained error exponents for the AWGN channel
and passive noisy feedback under the AS power constraint
for the transmission of a non-exponentially growing number
of messages M (zero-rate) using block coding (rather than
variable-length coding) [36]–[38]. Their work extends previ-
ous techniques used in the Binary Symmetric Channel (BSC)
with noisy feedback [39], [40] to the AWGN channel. Under
the AS power constraint and for a large number of messages
M , such that lnM = o(n), n → ∞ and σ2

FB → 0, the
following error exponent is achievable [36, Theorem 1 (a)]:

EAS
FB (M,P, σ, σ2

FB) ≥
PM

4σ2(M − 1)

[
1 +

1

2 +
√

5
− 1

2M
+ o(1)

]
. (8)

As σ2
FB →∞, (9) is achievable and strictly larger than the

feedback-free error exponent [36, Theorem 1 (b)]:

EAS
FB (M,P, σ, σ2

FB) ≥ PM

4σ2(M − 1)

[
1 +

1

56σ2
FB

+O(σ−4
FB )

]
> E(M,P, σ, σ2

FB =∞) =
PM

4σ2(M − 1)
.

(9)

For very small feedback noise (8) was improved as follows
for M →∞ with lnM = o(n) as n→∞ in [37], yielding a
larger improvement over feedback-free than that of (8):

EAS
FB

(
M →∞, P, σ2, σ2

FB

)
≥ P

3σ2

(
1− σ2

FB

)
.

Kim, Lapidoth, and Weissman derived bounds on the reli-
ability function of the AWGN channel with AWGN passive
noisy feedback of very small and non-zero noise variance
σ2

FB = ε2 : 0 < ε2 � 1 in [41]. They presented bounds
on the error exponent for M = 2 under the expected average

power constraint 1
n

∑n
i=1 E

[
X2
i

]
≤ P , as:

P

2σ2
FB
≤ EEXP

FB

(
M = 2, P, σ2 = 1, σ2

FB

)
≤ P (1 + σ2

FB)

2σ2
FB

.

Passive feedback is also exploited by Xiang and Kim in
[18], where achievable error exponents for the transmission
of M ≥ 3 messages were presented under the constraint
P[
∑n
i=1 x

2
k(w, Ỹ k−1) ≤ nP ] = 1,∀w ∈ {1, · · · ,M} on the

forward channel and noisy AWGN feedback. They proposed
passive (simply send back the output signal over the noisy
feedback channel without any power constraints) non-linear
and linear feedback schemes presented below, and our altered
versions – in which a symbol-by-symbol (hence passive)
scaled version of the output symbols is fed back and shown to
meet the AS power constraint in the feedback direction – in
Section III, as a part of our contributions. The error exponents
are re-computed for these altered schemes.

The non-linear passive scheme with an AS power constraint
in the forward direction, and no power constraint in the
(passive, noisy) feedback direction of [18] achieves a lower
bound on the error exponent for general M ≥ 3 as (10),
outperforming the feedback-free error exponent of (6) when
σ2

FB <
σ2

4 .

EAS-NL
FB

(
M,P, σ2, s

)
≥

min

{
M

P

2σ2

s2 − 2s+ 4

M(s2 − 2s+ 4) + 3(M − 2)
,

P

σ2
FB

3M

8

s2

M(s2 − 2s+ 4) + 3(M − 2)︸ ︷︷ ︸
passive feedback

 ,(10)

where, s ∈ [0, 1] is chosen to equate both terms in (10),

resulting in the optimal choice: s =
1−

√
3 σ2

σ2FB
−3

1− 3
4
σ2

σ2FB

. Note that

(10) is presented in a form that explicitly shows the con-
tribution to the error exponent of the forward and feedback
transmissions respectively. In Theorem 1 we show how this
non-linear passive scheme may be altered to accommodate an
AS power constraint in the feedback link as well.

The other coding scheme proposed in [18], which we refer
to as the linear coding scheme, provides an error exponent that
outperforms the non-linear scheme when the noise variance in
the feedback link is very low. For the transmission of M ≥ 2
messages, [18, Theorem 2] shows:

EAS-LIN
FB (M,P, σ2 = 1, σ2

FB)

≥ P

2

1

1 + σ2
FB + 4 (bM/2c)2

σ2
FB + 4 (bM/2c)

√
σ2

FB(1 + σ2
FB)

≥ P

2

1(√
σ2

FBM +
√

1 + σ2
FB

)2 ,

where the super-script AS-LIN refers to linear coding scheme
under AS. In Theorem 3 we show how this scheme can be
extended to include the AS constraint in the feedback link as
well.
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Error exponents under active feedback: Error exponents
under active noisy feedback (see Figure 1) were presented in
[19] for the EXP power constraint for the forward channel and
both AS and EXP power constraints for the feedback link and
M = 2 messages. The corresponding lower and upper bound
results are:
• AS feedback power constraint:

∑n
k=1 u

2
k(Y k) ≤ nPFB

EEXP
FBAS

(
2, P, σ2, PFB, σ

2
FB

)
≥ P

2σ2
+

2PFB

σ2
FB

,

EEXP
FBAS

(
2, P, σ2, PFB, σ

2
FB

)
≤ P

2σ2
+

2
√

(PFB + σ2
FB)PFB

σ2
FB

.

• EXP feedback power constraint: E
[∑n

k=1 u
2
k(Y k)

]
≤

nPFB

EEXP
FBEXP

(
2, P, σ2, PFB, σ

2
FB

)
≥ 2

(
P

σ2
+
PFB

σ2
FB

)
, (11)

EEXP
FBEXP

(
2, P, σ2, PFB, σ

2
FB

)
≤(√

P + σ2 +
√
P
)2

σ2
+

(√
PFB + σ2

FB +
√
PFB

)2

σ2
FB

.

3) A discussion on active and passive feedback: The
various achievable error exponents for the one-way AWGN
channel with noisy feedback strongly depend on the type of
power constraint imposed for both directions. For example,
the more flexible EXP constraint yields an error exponent at
least four times larger than the feedback-free exponent for any
M when noisy (active) feedback is used. This may be seen
from Theorem 4 by comparing (20) with (6). This differs
remarkably from conclusions under the AS constraint, where
even with perfect (passive) feedback, the feedback-free error
exponent may only be improved up to P

2σ2 , see (7), which
does not depend on the number of messages being sent and
is attainable only for M = 2 without the use of feedback. If
perfect feedback is available, Pinsker’s [6] error exponent P

2σ2

is achievable for any M ≥ 2, such that limn→∞
logM
n = 0.

The linear-scheme of [18] approaches Pinsker’s error exponent
as σ2

FB → 0 using passive noisy feedback.

B. The two-way AWGN channel

Fig. 2. Two-way AWGN channel.

The two-way AWGN channel was introduced by Shannon
[42] and further studied by Han [43]. Its capacity region (with
independent noise across terminals) is known [43], [44], and
is a rectangular region where both users may simultaneously
attain their interference-free AWGN capacity (denoted by

R12 ≤ C12 and R21 ≤ C21 for each direction respectively).
The capacity region cannot be increased by interaction or
adaptation between the two terminals. The question pursued
here is whether the same is true of error exponents. Figure
2 shows the two-way AWGN channel, comprising two users
denoted by terminal i, for i ∈ {1, 2}, each transmitting
message Wi, uniformly selected from Wi := {1, · · · ,M}
to terminal (3 − i) using a block code of block length n.
The general two-way AWGN channel model is given by (12),
characterizing the channel output observed at the i-th terminal

Yi = Xi + aiX3−i +Ni, (12)

where, ai is a constant, Xi ∈ R corresponds to channel inputs
satisfying an input block power constraint, Yi ∈ R corresponds
to channel outputs and Ni ∼ N (0, σ2

i ) to zero-mean Gaussian
noise processes, each independent and identically distributed
across channel uses. The model of (12) can be simplified
by noting that each terminal can subtract its own signal Xi.
Hence, the two-way AWGN channel may equivalently be
represented as

Yi = X3−i +Ni; Ni ∼ N (0, σ2
i ).

We characterize error exponents for the zero-rate operational
rate pair, i.e. for (R12, R21) = (0, 0), and for different ratios
between the SNRs in the two directions. Let Pi

σ2
(3−i)

be the

signal-to-noise ratio for link i → (3 − i). We consider both
symmetric

(
P1

σ2
2

= P2

σ2
1

)
and non-symmetric

(
P1

σ2
2
6= P2

σ2
1

)
chan-

nels. The latter case is of particular importance under the AS
power constraint, since only a feedback channel stronger that
the forward direction leads to gains over feedback-free error
exponents [18], [36], [38]. We have been unable to achieve
error exponents greater than without feedback for symmetric
SNR channels under the AS constraint. We formalize the
problem next.

Let
(
M,P1, σ

2
2 , P2, σ

2
1 , n
)

be a code of block length n
which consists of two encoding and two decoding rules as
in Figure 2. The i-th terminal’s encoding rule consists of n
functions, defined for the k-th channel use as:

xi,k : {1, · · · ,M} × Y k−1
i → Xi, for k = 1, ..., n,

leading to the k-th channel inputs for terminal i, Xi,k =
xi,k

(
Wi, Y

k−1
i

)
. Decoding rules are denoted by φi, and

estimate the received message based on the sequence Y ni as:

φi : Yni ×Wi →W3−i, for i = 1, 2.

The probability of error simultaneously achieved by a
particular (M,P1, σ

2
2 , P2, σ

2
1 , n) code in the forward and

backward directions under a Ψ ∈ {AS,EXP} power
constraint is denoted by PΨ

e12

(
M,P1, σ

2
2 , P2, σ

2
1 , n
)

=
1
M2

∑
w1,w2

P(φ2(yn2 , w2) 6= w1|w1, w2 sent) and equiva-
lently PΨ

e21

(
M,P1, σ

2
2 , P2, σ

2
1 , n
)
.

Definition 1. A pair of error exponents (E12, E21)
Ψ is achiev-

able for the transmission of a finite number of messages M
under Ψ power constraint for the two-way AWGN channel, if
there exists an

(
M,P1, σ

2
2 , P2, σ

2
1 , n
)

code such that for large
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n, simultaneously

− 1

n
logPΨ

e12

(
M,P1, σ

2
2 , P2, σ

2
1 , n
)
≥ EΨ

12

(
M,P1, σ

2
2 , P2, σ

2
1

)
,

− 1

n
logPΨ

e21

(
M,P1, σ

2
2 , P2, σ

2
1 , n
)
≥ EΨ

21

(
M,P1, σ

2
2 , P2, σ

2
1

)
.

Definition 2. The error exponent region (EER) for the two-
way AWGN channel and the transmission of M messages
corresponds to the union over all achievable error exponent
pairs (E12, E21)Ψ, where we will often drop the arguments of
Eij for simplicity and sometimes we may refer to (E12, E21)AS

as (EAS
12 , E

AS
21).

Two-way error exponents have not been studied to the best
of our knowledge. An initial characterization for the two-
way AWGN was presented by the authors in [45] which
we extend here. In this channel, each terminal intuitively
performs two tasks: 1) transmission of their own message,
and 2) transmission of feedback information for the other
terminal, which may consume part of its available power. Our
achievable error exponent regions suggest that gains resulting
from interaction may come at the price of a reduction of the
error exponent of the terminal providing feedback.2

III. CONTRIBUTIONS

We outline our contributions in a series of Theorems in
this section; later sections provide the proofs, remarks on
extensions to larger M , and numerical evaluations.

A. Achievable error exponents for the one-way AWGN channel
with noisy feedback

We present new achievable error exponents for the one-way
AWGN channel for the transmission of a finite number of
messages M under the AS and EXP power constraints and
both passive and active AWGN feedback.

Theorem 1. Under the AS power constraint in both directions
of a one-way AWGN channel with non-linear passive noisy
feedback and the transmission of finite M ≥ 3 messages, an
achievable error exponent for s ∈ [0, 1] is determined by (13)
To maximize this expression, take s ∈ [0, 1] that equates both

terms in (13) as s =
1−

√
3 σ2

σ2FB

PFB
P+5σ2+σ

√
P
−3

1− 3
4
σ2

σ2FB

PFB
P+5σ2+σ

√
P

.

Remark 1. The left term of the min operation in (13) leads
to an error exponent strictly larger than the feedback-free
error exponent presented in (6) for any choice of s < 1,
and attains its largest value at s = 0, since the factor in
parentheses is monotonically decreasing with s for all M .
The right term attains its largest value when s = 1, since the
term in parentheses is monotonically increasing with s for all
M . Hence, a critical point (denoted as σ2

FB2 in Figure 8) exists

2Since we operate at zero-rate, the tradeoff with rate is not captured.
However, the EER does generally depend on the number of messages M
being sent in each direction. Extensions to different numbers of messages in
the two directions is left for future work.

for which, for σ2
FB <

σ2

4
PFB

P+5σ2+σ
√
P

an error exponent strictly
larger than the feedback-free error exponent is achievable.

This Theorem is shown in Appendix A and follows by
scaling the feedback signal used in the non-linear passive
scheme of [18] achieving the exponent in (10) by a factor
which ensures the AS power constraint of PFB is met in the
feedback direction. This scaling alters the achieved error expo-
nent, resulting in (13). We note that this error exponent shows
a dependence on the feedback power constraint PFB, whereas
the original non-linear passive scheme of [18, Theorem 1] in
(10) does not impose a power constraint (nor do they scale the
received signal) in the feedback direction and hence does not.
The relation between both results is presented in the following
remark.

Remark 2. The achievable error exponent in (13) (non-linear
passive feedback, AS feedback power constraint) yields that
of (10) from [18, Theorem 1] (passive feedback, no feedback
power constraint) when PFB = P + 5σ2 + σ

√
P . It is easy to

show that if PFB > P + 5σ2 + σ
√
P , then the scaled passive

scheme’s error exponent in (13) outperforms that of (10); the
reverse is true otherwise, though the schemes should perhaps
not be compared as one has a power constraint in the feedback
direction and the other does not.

The use of active feedback leads to our next contribution:

Theorem 2. Under the AS power constraint in both directions
of a one-way AWGN channel with non-linear active noisy
feedback and the transmission of finite M ≥ 3 messages, an
achievable error exponent for s ∈ [0, 1] is determined by (14).

Remark 3. The largest achievable error exponent for the
active feedback coding scheme expression in (14), occurs when
s = 0, thus:

EAS
FBAS

(
M,P, σ2, PFB, σ

2
FB

)
≥

min

{
P

σ2

2M

7M − 6)
,
PFB

σ2
FB

M(M − 1)

4 (M(M − 1)− 2)

}
.(16)

This expression results from the use of active feedback,
as opposed to passive as done in the linear and non-linear
noisy coding schemes of [18]. We use three non-overlapping
stages: first an initial transmission of message W in λ(n− 1)
channel uses using a simplex code of size M . As in [18], if the
received sequence is in a protection region, then all remaining
transmissions are ignored until the next message is sent.
Otherwise, an active feedback stage of duration (1−λ)(n−1)
using a simplex code of size

(
M
2

)
is used to feed back the most

likely pair of messages candidates the receiver has determined
(denoted by q = {ŵ1, ŵ2}, where ŵ1, ŵ2 ∈ {1, · · · ,M} and
represents the two closest (minimum distance) messages to
the sequence received in the first stage). Once q is decoded
by the transmitter as q̂ = {w̃1, w̃2}, a single channel use
retransmission signal is sent to indicate whether the true
message W is the first or second element in q̂. If W is not in
q̂, this counts as an error, and nothing is sent to the receiver.

Remark 4. The resulting expressions of Theorems 1 and 2
only differ in the term of the right of the min operation, which
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EAS
FBAS

(
M,P, σ2, PFB, σ

2
FB, s

)
≥ min

{
M

P

2σ2

(
s2 − 2s+ 4

M(s2 − 2s+ 4) + 3(M − 2)

)
,

P

σ2
FB

3M

8

(
s2

M(s2 − 2s+ 4) + 3(M − 2)

)
PFB

P + 5σ2 + σ
√
P︸ ︷︷ ︸

passive feedback

 . (13)

EAS
FBAS

(
M,P, σ2, PFB, σ

2
FB, s

)
≥ min

M
P

2σ2

(
s2 − 2s+ 4

M(s2 − 2s+ 4) + 3(M − 2)

)
,
PFB

σ2
FB

M(M − 1)

4 (M(M − 1)− 2)︸ ︷︷ ︸
active feedback

 . (14)

EAS-LIN
FBAS

(
M,P, σ2, σ2

FB, α
)
≥ P

2

1

σ2 +
σ2

FB
α2 + 4 (bM/2c)2

σ2
FB/α

2 + 4 (bM/2c)
√

σ2
FB
α2

(
σ2 +

σ2
FB
α2

) . (15)

depends on how feedback is handled. In both schemes, PFB

can be chosen to be large enough such that (13) and (14),
are dominated by the term on the left, which is the same for
both. This term is monotonically decreasing in s, maximized as
s→ 0, over the valid choices of s ∈ [0, 1]. The active feedback
scheme is able to achieve this maximal error exponent at a
lower PFB than that needed by the non-linear passive scheme.

We can also directly show that the non-linear passive
scheme’s error exponent is always upper bounded by the active
scheme. To do so, we show that the right term in the min
function of the passive scheme -(13)- is no larger than the
right hand side of the min function of the active scheme -
(14)-,

P

σ2
FB

3M

8

s2

M(s2 − 2s+ 4) + 3(M − 2)

PFB

P + 5σ2 + σ
√
P

=
PFB

σ2
FB

3M

8

s2

M(s2 − 2s+ 4) + 3(M − 2)

P

P + 5σ2 + σ
√
P︸ ︷︷ ︸

≤1

≤ PFB

σ2
FB

3M

8

s2

M(s2 − 2s+ 4) + 3(M − 2)
(a)

≤ PFB

σ2
FB

3M

8

1

6(M − 1)

=
PFB

σ2
FB

1

4

M

4(M − 1)
(17)

(b)

≤ PFB

σ2
FB

1

4

M(M − 1)

M(M − 1)− 2
(18)

where (a) follows as s2

M(s2−2s+4)+3(M−2) is monotonically
increasing in s ∈ [0, 1], for any M and is maximized with
s = 1; (b) follows as the term in parenthesis of (17):

M
4(M−1) < 1, whereas that in (18): M(M−1)

M(M−1)−2 > 1.
Intuitively, the active coding scheme renders the feedback

transmission resilient to noise. In the passive coding scheme,
the transmitter obtains a noisy version of the received sequence
yλ(n−1) and estimates the most likely codeword pair deter-
mined by the receiver. In the active feedback scheme, this pair
is determined at the receiver directly, encoded using a simplex
code and sent over the noisy feedback link to the transmitter.

Section IV presents the proof of this result for M = 3, and the
generalization for any finite M ≥ 3 is presented in Appendix
B.

Next we present an achievable error exponent resulting from
scaling the feedback direction of the linear, passive coding
scheme of [18, Theorem 2] to meet an AS power constraint
in the feedback direction:

Theorem 3. Under the AS power constraint in both direc-
tions of a one-way AWGN channel with linear passive noisy
feedback and the transmission of finite M ≥ 2 messages, an
achievable error exponent is determined by (15), where α is
the scaling factor that guarantees the AS constraint is met,
and determined by the solution of: 2L (σFB/α)

2L (σFB/α) +

√
σ2 +

σ2
FB
α2

P+

2σ

√√√√√
 2L (σFB/α)

2L (σFB/α) +

√
σ2 +

σ2
FB
α2

P =
PFB

α2
, (19)

given P, PFB, σ
2, σ2

FB and L = bM/2c.

This result is a direct extension of [18, Theorem 2] which
is recovered by setting α = 1. We present its derivation in
Appendix C.

Remark 5. This coding scheme leads to an error exponent
that is higher than those attained in Theorems 1 and 2 when
the noise in the feedback link is very low, as was reported in
[18, Theorem 2]. This continues to be true even the feedback
input channels are also subject to an AS power constraint.
Furthermore, as σ2

FB → 0 it recovers Pinsker’s result in (7),
the error exponent under noiseless feedback.

Next, we present a generalization of the Kim-Lapidoth-
Weissman [19] achievable error exponent for M = 2 under
the EXP constraint for both directions to any arbitrary but
finite number M ≥ 2:

Theorem 4. Under the EXP power constraint in both direc-
tions of a one-way AWGN channel with active noisy feedback
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and the transmission of finite M ≥ 2 messages, an achievable
error exponent is:

EEXP
FBEXP

(
M,P, σ2, PFB, σ

2
FB

)
≥ M

M − 1

(
P

σ2
+
PFB

σ2
FB

)
.(20)

Observe that (20) yields the result of [19, Equation (15)]
when M = 2, shown in (11). Hence, the achievable error
exponent under the EXP constraint and noisy feedback at
least quadruples the one attained under AS in the absence
of feedback, provided in (6), not only for M = 2 (first
shown in [19]) but for any finite number of messages being
sent. The error exponent of (20) is achieved by a three-
stages coding scheme based on a building block (BB) which
is used to send message W using λ(n −M) channel uses.
This is decoded as W ′ and feed back using the same building
block in (1 − λ)(n −M) channel uses and decoded as W ′′.
Finally, the transmitter compares the true W and W ′′ and
generates a length M retransmission codeword used to correct
transmission errors.

B. Error exponents for the Two-Way AWGN channel

We derive achievable error exponent regions for the two-
way AWGN channel, both for interactive and non-interactive
terminals.

1) Non-interactive terminals: When terminals ignore (for
the purpose of generating their channel inputs) the received
outputs, the following error exponent region is achievable:

Proposition 1. An achievable EER for non-interactive termi-
nals in a two-way AWGN channel and the transmission of a
finite number of messages M is formed by the union over all
simultaneously achieved error exponents pairs under the AS
and EXP power constraints and given by:

E12 ≥
P1

σ2
2

M

4(M − 1)
, (21)

E21 ≥
P2

σ2
1

M

4(M − 1)
. (22)

Equations (21) and (22) follow directly in the form of (6)
from [4], and are based on a simplex code. Each terminal
focuses on its own transmission only without allocating any
resources to help the other direction.

2) Interactive terminals: Two-way error exponents may
benefit from interaction in certain scenarios, but not others.
For example, under the AS constraint, interaction cannot
improve the two-way error exponents for M = 2 since the
error exponent attained without feedback matches that with
perfect feedback, and is given by Pinsker’s bound in (7).
Pinsker’s upper bound suggests that for M > 2, error exponent
gains over non-feedback are possible in both directions when
interaction or feedback is employed.

Achievable EER under the AS power constraint: We
study the transmission of M ≥ 3 messages over an AWGN
two-way channel with P1

σ2
2
< P2

σ2
1

. As in the one-way channel
with noisy feedback under AS constraints, [18], [36], [37],
we have not been able to obtain gains over Proposition 1 for
symmetric SNRs. Assuming the 1→ 2 direction is noisier than

the 1 ← 2 direction, we consider a two-way coding scheme
in which the stronger 1← 2 link is used during a fraction of
the block length n to transmit W2 without feedback, and for
another fraction of time, to improve the error exponent of the
weaker 1→ 2 direction using either passive or active feedback
for the transmission of W1. This results in the following two
theorems:

Theorem 5. For the transmission of M ≥ 3 messages
and passive feedback, any error exponent pair (EAS

12 , E
AS
21)

satisfying (23) and (24) is achievable, for some λ ∈ [0, 1],
and s ∈ (0, 1) and P1

σ2
2
< P2

σ2
1

.

Equation (23) follows from (6) and the use of a non-
feedback, simplex-code-based transmission for message W2

in the first λn channel uses. Equation (24) follows from direct
application of the non-linear noisy feedback coding scheme
in Theorem 1, used to transmit message W1 in the remaining
(1 − λ)n channel uses. The factor α2 is used to ensure the
AS power constraint in the 1← 2 direction is satisfied, and is
derived in a similar way as in the one-way channel presented in
Theorem 1, shown in Appendix A. The power available at the
receiver to provide passive feedback is (1− λ)P2, since λP2

is allocated for the transmission of the messages in the 1← 2
direction. Equivalently to Theorem 1, (24) is maximized for

the choice of s ∈ [0, 1] of s =
1−

√
3
σ22
σ21

P2(1−λ)
P1+5σ22+σ2

√
P1
−3

1− 3
4

σ22
σ21

P2(1−λ)
P1+5σ22+σ2

√
P1

, and

the equivalent to Remark 1 applies. Next, active feedback is
considered.

Theorem 6. For the transmission of M ≥ 3 messages and
active feedback, any error exponent pair (EAS

12 , E
AS
21) satisfying

the following is achievable, for some λ ∈ [0, 1], and P1

σ2
2
< P2

σ2
1

:

EAS
21 ≥

M

4(M − 1)
λ
P2

σ2
1

(27)

EAS
12 ≥ min


P1

σ2
2

2M

7M − 6
,
P2

σ2
1

(1− λ)M(M − 1)

4 (M(M − 1)− 2)︸ ︷︷ ︸
active feedback

 .(28)

As in Theorem 5, (27) follows from using (6) for λn channel
uses and a simplex code of M symbols for the transmission of
W2 in the 1← 2 direction. Equation (28) results from the use
of encoded feedback for the transmission of message W1 in
the 1→ 2 direction, using the scheme for the one-way AWGN
channel presented in Section III-A, Theorem 2, and the error
exponent given in (16).

Figure 3 shows block diagrams of the schemes used to
obtain Theorems 5 and 6. Message W2 is sent over the stronger
link without feedback, and W1 is transmitted in the opposite
direction respectively with (a) passive or (b) active feedback.
In (a), the weaker channel remains idle while W2 is being
sent during λn channel uses. Terminal 1 initiates its own
transmission (helped by Terminal 2) once the 1← 2 message
transmission concludes. In the remaining (1 − λ)n channel
uses, W1 is transmitted employing the non-linear passive
feedback scheme presented in Theorem 1. Since Terminal 2
used part of its available power P2 to send W2, only the
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EAS
21 ≥

M

4(M − 1)
λ
P2

σ2
1

, (23)

EAS
12 ≥ min

M
P1

2σ2
2

s2 − 2s+ 4

M(s2 − 2s+ 4) + 3(M − 2)
,
P1

σ2
1

3M

8

s2

M(s2 − 2s+ 4) + 3(M − 2)

α2︷ ︸︸ ︷
P2(1− λ)

P1 + 5σ2
2 + σ2

√
P1︸ ︷︷ ︸

passive feedback

 . (24)

EAS21 ≥
M

4(M − 1)
λ
P2

σ2
1

(25)

EAS
21 ≥

P1

2

1

σ2
2 +

σ2
1

α2 + 4 (bM/2c)2
σ2

1/α
2 + 4 (bM/2c)

√
σ2
1

α2

(
σ2

2 +
σ2
1

α2

) , (26)

remainder can be used to serve the other direction through
feedback. Note that during passive feedback, the i-th output
received at Terminal 2 is immediately fed back to the Terminal
1 without delay and both directions are busy at the same time.
In (b), the transmission of W2, occurs in λ(n−1) channel uses,
simultaneously to the first stage of the active feedback assisted
transmission of W1 which occurs over the weaker channel.
This is possible since both directions are independent, and
because in our scheme the active feedback stage starts once
the first stage transmission of W1 is concluded.

Apparently, error exponent gains over feedback-free trans-
mission are possible only for the weaker direction. This is not
surprising given the results for the one-way channel with noisy
feedback under an AS power constraint. The linear passive
feedback scheme of Theorem 3 may be used for two-way
communication as well, leading to the following theorem:

Theorem 7. For the transmission of M messages and passive
linear feedback, any error exponent pair (EAS

12 , E
AS
21) satisfying

(25) and (26) is achievable, for some λ ∈ [0, 1] and P1

σ2
2
< P2

σ2
1

,
where α is the scaling factor that guarantees the AS constraint
is met, and determined by the solution of: 2L (σ1/α)

2L (σ1/α) +

√
σ2

2 +
σ2
1

α2

P+

2σ2

√√√√√
 2L (σ1/α)

2L (σ1/α) +

√
σ2

2 +
σ2
1

α2

P =
P2(1− λ)

α2
, (29)

given P1, P2, σ
2
1 , σ

2
2 and L = bM/2c.

This theorem results from a time-sharing argument, in
which during λn channel uses, message W2 is sent in the
stronger 1 ← 2 without feedback, thus (25) results from
the feedback-free error exponent derived by Shannon [4] and
shown in (6). In the remaining (1 − λ)n channel uses, the
linear coding scheme with noisy feedback from [18, Theorem
2] and modified in Theorem 3 is utilized to transmit message
W1 in the weaker 1 → 2 direction, taking into account that
terminal 2 has already used part of its available energy for the

transmission of W2. This results in (26) and the associated
expression for the choice of α in (29). This scheme leads to
error exponent gains over feedback-free transmissions in the
weaker direction at the expense of a decrease of the error
exponent of the stronger direction. Such gains are possible
when the 1 ← 2 direction operates in the SNR regime for
which the linear passive feedback scheme outperforms the
feedback-free error exponent, i.e. see Figure 8 (right).

Next, we consider the EXP power constraint, which permits
very rarely occurring high amplitude transmissions. We show
how this feature is used in the two-way AWGN channel as
well, which holds for all relative SNR conditions.

Achievable error exponents region under the EXP power
constraint: We propose a coding scheme based on the one-
way building block introduced by Kim-Lapidoth-Weissman
[19], which we modified to operate for a general number of
messages (Theorem 4), and further customized here to support
two-way communications. Our scheme involves three stages in
which each terminal first sends their message, then, feeds back
an estimate of the previously received message, and finally (if
necessary) triggers a high amplitude retransmission to correct
erroneous decoding decisions. This scheme results in the EER
described by the following theorem:

Theorem 8. For the transmission of M ≥ 2 messages
and active feedback, any error exponent pair (EEXP

12 , EEXP
21 )

satisfying the following is achievable, for some λ ∈ [0, 1]

EEXP
12 ≥

M

M − 1

(
λK1

P1

σ2
2

+ (1− λ)J2
P2

σ2
1

)
(30)

EEXP
21 ≥

M

M − 1

(
λK2

P2

σ2
1

+ (1− λ)J1
P1

σ2
2

)
, (31)

where K1,K2 ∈ [0, 1
λ ] and J1, J2 ∈ [0, 1

1−λ ] are power
allocation parameters such that

λKi + (1− λ)Ji ≤ 1, for i = 1, 2. (32)

An achievable error exponent sum-rate is given by adding
Equations (30) and (31).

EEXP
12 + EEXP

21 ≥ M

M − 1

(
λK1

P1

σ2
2

+ (1− λ)J2
P2

σ2
1

)
+
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(a) (b)

Fig. 3. Two-Way AWGN channel coding schemes block diagrams under AS power constraint, where the 1← 2 direction is stronger (has higher SNR) than
the 1→ 2 direction.

M

M − 1

(
λK2

P2

σ2
1

+ (1− λ)J1
P1

σ2
2

)

=
M

M − 1

P1

σ2
2

(λK1 + (1− λ)J1)︸ ︷︷ ︸
=1 by (32)

+

P2

σ2
1

(λK2 + (1− λ)J2)︸ ︷︷ ︸
=1 by (32)


=

M

M − 1

(
P1

σ2
2

+
P2

σ2
1

)
,

where the last equality follows by choosing the parameters
such that (32) is satisfied with equality. Figure 4 shows this
EER. Theorem 8 results from the simultaneous use of the
three-stage coding scheme presented for the one-way channel
for both directions. Thus the BB is used for λ(n − M)
channel uses to transmit messages W1 and W2, which are
respectively decoded as W ′1 and W ′2. Then, the BB is used
during (1−λ)(n−M) channel uses to transmit these estimates
back to the terminal where each message originated. These are
respectively decoded as W ′′1 and W ′′2 . The last stage involves
M channel uses in each direction based on the index location
code similar to the one-way scheme. Thus, each direction
operates for a fraction of time aided by the other terminal.
Below, the axis-crossing points result from dedicating the
whole block length n and all power of one terminal to provide
feedback for the transmission of the other direction only.

C. A discussion on outer bounds
Outer bounds on the error exponent region for the two-way

AWGN channel may be derived from existing results for the
one-way AWGN channel. Under the EXP power constraint
and M = 2, outer bounds on the error exponent region for
the two-way AWGN channel follow directly from using the
one-way channel outer bound under noisy feedback presented
in [19] for each direction:

Proposition 2. Any achievable error exponent pair
(EEXP

12 , EEXP
21 ) under the EXP power constraint for M = 2

must satisfy

EEXP
12

(
M = 2, P1, σ

2
2 , P2, σ

2
1

)
≤(√

P1 + σ2
2 +
√
P1

)2

σ2
2

+

(√
P2 + σ2

1 +
√
P2

)2

σ2
1

Fig. 4. Achievable error exponent region for the transmission of M messages
under the EXP power constraint.

EEXP
21

(
M = 2, P1, σ

2
2 , P2, σ

2
1

)
≤(√

P2 + σ2
1 +
√
P2

)2

σ2
1

+

(√
P1 + σ2

2 +
√
P1

)2

σ2
2

.

An upper bound for the two-way AWGN channel error
exponent region under the AS power constraint is given
directly by providing perfect noiseless output feedback to both
transmitters (like two one-way channels with perfect feedback,
not using those perfect links to convey messages). Then, from
[6]:

Proposition 3. Any achievable error exponent pair (EAS
12 , E

AS
21)

under the AS power constraint for any M must satisfy

EAS
12

(
M,

P1

σ2
2

,
P2

σ2
1

)
≤ P1

2σ2
2

,

EAS
21

(
M,

P1

σ2
2

,
P2

σ2
1

)
≤ P2

2σ2
1

.

This concludes the statement of our main results. The
remainder of the paper consists of the proofs and numerical
evaluations of these regions, so that their performance can be
visually compared.
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IV. PROOF OF THEOREM 2: AN ACTIVE NOISY FEEDBACK
CODING SCHEME FOR THE ONE-WAY AWGN CHANNEL

FOR THREE MESSAGES UNDER THE AS POWER
CONSTRAINT

Equation (14), follows from altering the non-linear passive
feedback technique from Xiang-Kim [18, Section II] for M ≥
3, to allow active feedback. We present the proof next in some
detail for M = 3, and generalize this to arbitrary but finite
M ≥ 3 in Appendix B. For the transmission of three messages
from Ω3 =W = {1, 2, 3}, we use the simplex code defined in
(3), which results in C (Ω3, E) and length n codewords Xn(ω):

Xn(ω) =



√
E · (0, 1, 0, ..., 0), if ω = 1
√
E ·
(
−
√

3
2 ,− 1

2 , 0, ..., 0
)
, if ω = 2

√
E ·

(
+
√

3

2
,−1

2
, 0, ..., 0

)
︸ ︷︷ ︸

n channel uses

, if ω = 3
. (33)

Consider transmitting a message W uniformly chosen from
W over the channel of Figure 1 assuming the feedback link is
strictly better than the forward, PFB

σ2
FB
> P

σ2 . The block diagram
of the non-linear noisy feedback scheme from Xiang-Kim
using passive feedback (thus Uk = Yk) is shown in Figure
5 (a), whereas (b) shows the scheme we propose for active
feedback, where the transmission of W occurs in n channel
uses through three non-overlapping stages: transmission, active
feedback, and retransmission (RTX). Thus, a stage starts
only once the previous one is complete. Moreover, we have
sketched consecutive transmissions of messages to show how
the transmitter initiates the transmission of the next message
while it is receiving the feedback message from the previous
one.

1. Transmission: This first stage lasts for λ(n−1) channel
uses, where message W = w is transmitted without feedback
as codeword Xλ(n−1)(w) from (33), using the simplex code
C (W, βnP ). At the receiver, sequence yλ(n−1) is decoded us-
ing protection regions Bw (as in [18]), one for each transmitted
codeword as shown in Figure 6 and defined in (34). Sequences
received inside region Bw are immediately decoded as the
codeword w (and the other stages are ignored). These regions
are parameterized by s ∈ [0, 1] following [18, Equation (6)]
for a parameter t ∈ [0,

√
3−1
2 ] which is geometrically coupled

to s by the relation:
∣∣∣ 1+s/2√

3
−
√
s2−2s+4

2
√

3

∣∣∣ = t. This guarantees

that distance d5 = minyλ(n−1)∈A′23∪B2∪B3
||xλ(n−1)(1) −

yλ(n−1)||.

Bw =
{
yλ(n−1) : ||xλ(n−1)(w)− yλ(n−1)||

≤ ||xλ(n−1)(w′)− yλ(n−1)|| for w′ 6= w,

and
∣∣∣||xλ(n−1)(w′)− yλ(n−1)|| − ||xλ(n−1)(w′′)− yλ(n−1)||

∣∣∣
≤ td′, for w′ 6= w, w′′ 6= w} . (34)

Figure 6 also illustrates regions A′12, A
′
13, A

′
23, that represent

regions in which the receiver is undecided between two
codewords. The definition of these regions follows as in [18,

Section II-B]:

A′ww′ = Aww′ \

(⋃
w′′

Bw′′

)
, w, w′ ∈ [1 : 3] (35)

which can be generalized to any M by taking w,w′ ∈ [1 : M ],
and where:

Aww′ =
{
yλ(n−1) :

max
{
||yλ(n−1) − xλ(n−1)(w)||, ||yλ(n−1) − xλ(n−1)(w′)||

}
≤ ||yλ(n−1) − xλ(n−1)(w′′)||, w′′ 6= w,w′′ 6= w′

}
From now on, without loss of generality (WLOG) assume
W = 1 is sent. The probability of error of this stage
corresponds to the occurrence of event ET, defined in (36)
which denotes sequence yλ(n−1) being received in the wrong
protection region B2∪B3, or in the ambiguous region exclud-
ing W = 1, i.e. yλ(n−1) ∈ A′23:

ET = {yλ(n−1) ∈ B2 ∪B3 ∪A′23}. (36)

The achievable error exponent of this stage is upper
bounded by [18, Equation (7)] as3 P(ET) ≤ 2Q

(
d5
σ

)
≤

exp
(
−n βP8σ2 (s2 − 2s+ 4)

)
(see Figure 6), and is hence

given in (37) as

lim
n→∞

− 1

n
log (P(ET)) := EET ≥

βP

8σ2
(s2 − 2s+ 4). (37)

2. Active feedback: When yλ(n−1) is not in a protection
region, the receiver determines which two codewords form
the most likely codeword pair q = {ŵ1, ŵ2}, given by the
two closest codewords to the received sequence as:

q =


{1, 2}, if yλ(n−1) ∈ A′12

{2, 3}, if yλ(n−1) ∈ A′23

{1, 3}, if yλ(n−1) ∈ A′13

.

Let Q be the set of q = {ŵ1, ŵ2} values defined above.
The most likely unordered pair (labeled lexicographically)
is encoded and sent to the transmitter as U (1−λ)(n−1)(q)
using the simplex code C (Q, nPFB) over the feedback link in
(1−λ)(n−1) channel uses (active feedback). The transmitter
estimates the sent message q as q̂ = {w̃1, w̃2}. An error occurs
if q, is incorrectly decoded at the transmitter q̂. We denote this
event as EAFB = {q̂ 6= q}, and its probability of occurrence as
P(EAFB).

Note that even if q̂ contains the true message, when q̂ does
not match q exactly, this is counted as an error. We do this
since in the last stage, whether the true message is the first
or second element in the pair is encoded in the polarity of an
antipodal signaling. As such, while in some cases an erroneous
q̂ could still lead to the correct re-transmission, we choose
to simply count them all as errors and require q̂ = q. the
achievable error exponent for this stage is given by (38), which
results from (6) since we use a simplex code [4] of three data

3Where Q(x) = 1√
2π

∫∞
x exp

(
− y

2

2

)
dy.
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(a) (b)

Fig. 5. Block diagrams for the non-linear noisy coding schemes under the AS power constraint.

Fig. 6. Protection regions decoding introduced by Xiang-Kim [18] and used
for decoding message W for the transmission stage. Here, d1 =

√
βnP ,

d4 = s
2
d1, d′ =

√
3βnP , and d5 =

√
βnP
4

(s2 − 2s+ 4).

symbols.

lim
n→∞

− 1

n
log (P(EAFB)) := EEAFB ≥

3

8

PFB

σ2
FB
. (38)

Note that since only (1−λ)(n−1) channel uses are available
for this stage, the receiver may scale up its transmission by

1
1−λ . Note as well that during the active feedback stage, the
transmitter remains idle for a portion of the channel uses, as
the simplex code for M data points concentrates the energy
in M − 1 dimensions.

3. Retransmission: The last stage occurs in the last (single)
channel use of the block of length n. At this point, the
transmitter and receiver have estimates of the two most likely
codewords, q = {ŵ1, ŵ2}, and q̂ = {w̃1, w̃2}, which are the
same otherwise this is counted as an error in the feedback
stage. Then, based on q̂, the transmitter uses antipodal sig-
naling to send the true codeword among these two candidates
using its remaining power:

Xn =


+
√

(1− β)nP , if w = min{w̃1, w̃2}
−
√

(1− β)nP , if w = max{w̃1, w̃2}
0, otherwise.

(39)

Note in the above, that parameter β is used to allocate the
power available at the transmitter between the Transmission
and Retransmission stages, whereas λ is used to characterize
the duration of the transmission and the active feedback stages.
Parameter λ requires attention as M becomes large, since
the number of channel uses required in the transmission and
feedback stages is respectively determined by the number of
dimensions imposed by the simplex code used; for example in
the transmission stage, M−1 dimensions are required, whereas
in the active feedback stage, this number is determined by the
number of codeword pairs possible out of the M messages
that could be transmitted. We address this in Section VI. At
the end of this stage, the message decoding rule follows that
of [18], in which Ŵ = ŵ:

ŵ =

arg min
w∈{ŵ1,ŵ2}

||xλ(n−1)(w)− yλ(n−1)||2 + ||xn(w)− yn||2.

The decoder errs if given that yλ(n−1) is outside the protection
regions and the feedback stage led to q = q̂, the following
event occurs:

ERT =
{

(W ∈ q = q̂) ∩
(
Ŵ 6= W

)
|W = 1

}
.

The error exponent of this stage is derived in a similar way
as in [18, P(E2) in Section II-A], thus we have that:

P(ERT) = Q

(√(
1− β

4

)
P

σ2
n

)
. (40)

Equation (40) results as for this stage, the event q̂ = q
renders the subsequent analysis equivalent to the noiseless
passive feedback case analyzed in [18], which thus derives
the error exponent by considering the distance between the
codewords of the simplex code of the transmission stage
(given by d′ =

√
3βnP ), and the antipodal signaling of the

retransmission stage (given by da = 2
√

(1− β)nP ). These
are used to characterize the distance between two codewords
as
√
d′2 + d2

a =
√

3βnP + 4(1− β)nP and utilized to obtain
(40), which leads to the error exponent:

lim
n→∞

− 1

n
log (P(ERT)) := EERT ≥

(
1− β

4

)
P

2σ2
. (41)
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To obtain the overall error probability upper bound, note
that by symmetry and WLOG W = 1 is sent. Denote this
conditional probability of error as P(error | W = 1) =
P1(W 6= Ŵ ). Note that P1(W 6= Ŵ ) = P2(W 6= Ŵ ) =
P3(W 6= Ŵ ), and hence, since the messages are uniformly
distributed P(error) = 1

3

∑3
i=1 Pi(W 6= Ŵ ) = P1(W 6= Ŵ ).

Then, we have

P(error) = P1(Ŵ 6= W ) ≤ P(ET) + P (EAFB) + P (ERT)

From (37), (38) and (41), the overall error exponent is thus
given by the minimum of the three stages:

E12

(
M = 3,

P

σ2
,
PFB

σ2
FB
, s

)
≥

min

{
βP

8σ2
(s2 − 2s+ 4),

3

8

PFB

σ2
FB
,

(
1− β

4

)
P

2σ2

}
.(42)

Equating the first and third terms, we obtain β = 4
s2−2s+5 .

This reduces the number of arguments of (42) to two, which
leads to (14) evaluated at M = 3. The generalization to M ≥ 3
is presented in Appendix B.

V. PROOF OF THEOREM 4: AN ACTIVE NOISY FEEDBACK
CODING SCHEME FOR THE ONE-WAY AWGN CHANNEL

FOR M ≥ 3 MESSAGES UNDER THE EXP POWER
CONSTRAINT

Theorem 4 results from a generalization of the Kim-
Lapidoth-Weissman coding scheme [19] (for the transmission
of M = 2 messages over the channel of Figure 4 under the
EXP power constraint) to support any finite M ≥ 3. We next
illustrate results for M = 3 using a geometric approach, which
is easily extended to larger finite M .

A. A communication building block for M = 3 messages

Consider the AWGN channel with active feedback of Figure
1 and described by (4) and (5), where both channel inputs are
subject to EXP power constraints: E

[∑n
k=1X

2
k

]
≤ nP and

E
[∑n

k=1 U
2
k

]
≤ nPFB.

1) Building block operation: The scheme for M = 2 [19]
is based on the usage of a “building block” (BB), which is a
three-stage (transmission, active feedback and retransmission)
scheme achieving an error exponent of 2P

σ2 if used in the
forward direction ( 2PFB

σ2
FB

if used in the feedback direction). We
will show that our modification for M = 3 results in a BB of
error exponent 3P

2σ2 .
In the first stage, W , taken uniformly from W = {1, 2, 3},

is sent in ν := n − 4 channel uses, using the simplex code
C (Ω3 =W, nP ), while the receiver remains silent. Figure
7 shows the constellation resulting from encoded messages
xν(W ) and their corresponding decoding regions Ai for
i ∈ {1, 2, 3}. Once the first stage is complete, the receiver
determines whether the received sequence yν is valid (ACK,
meaning yν ∈

⋃3
i=1Ai), or non-valid (NACK, meaning

yν /∈
⋃3
i=1Ai). The latter occurs for signals received in the

gray “NACK bands” shown below. The width of these bands
is proportional to the distance between any two codewords and
parameterized by t ∈ (0, 1). Each ACK region Ai corresponds

NACK BANDS

Fig. 7. Decoding regions based on “NACK-Bands”. The receiver performs
immediate decoding for sequences received in the Ai regions, otherwise, a
retransmission is necessary. Note that Regions Ai shown here are not related
to regions Aww′ shown in Figure 6.

to a space determined by M − 1 hyperplanes defined in
M−1 dimensions (in Figure 7, this corresponds to two lines).
Specifically, an ACK region is bounded by the hyperplanes
separating codeword xν(i) from each of the other M − 1 = 2
codewords xν(j), for j 6= i ∈ {1, 2, 3}. Note that each
codeword is in ν dimensions, but only the first 2 are non-
zero for M = 3, and hence we visually represent these in
2-D. Each separating hyperplane (line) is perpendicular to
the line connecting codewords i, j, represented by the vector
wij ∈ Rν and given by wij = xν(i) − xν(j). These lines
are located at a distance dA from codeword i. In Figure 7 for
example, A1 is determined by two hyperplanes (two lines), one
between codewords 1-2 and another between 1-3. Let the point
Hi ∈ Rν denote the intersection of the lines and ui denote
a unitary vector in the direction of codeword xν(i). Then,
Hi =

(√
nP − dC

)
ui, where dC = 1

2 (1 − t)
√

3nP sinαC ,
and the angle αC is given by the geometry of the constellation.
Next, we use point Hi and vector wij to characterize each sep-
arating line defining region Ai as: {x ∈ Rν | 〈wij ,x〉 = bi},
where bi = 〈wij , Hi〉. The region A1 is defined as

A1 =
⋂
j=2,3

{yν := y : 〈w1j ,y〉 ≥ 〈w1j , H1〉} , (43)

and the other two regions follow in a similar manner.
In the following, we assume that W = 1 is sent. Then,

in the second phase of the BB, the receiver’s decoding
decision (ACK/NACK) is encoded using the single channel
use feedback codeword Uν+1 in (44): NACK is encoded as a
very high amplitude signal since P1(NACK) is exponentially
small; for ACKs nothing is sent:

Uν+1 =

0, if ACK√
∆

P1(NACK) , if NACK
, (44)

for some ∆ > 0. By symmetry, P1(NACK) = P2(NACK) =
P3(NACK). To verify that NACK events occur very rarely,
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observe first that P1(NACK) = 1 − P1(ACK) and that
P1(ACK) ≥ P1(yν ∈ A1) ≥ 1− 2Q

(
dA
σ

)
, and hence

P1(NACK) ≤ 2Q

(
dA
σ

)
≤ exp

(
− d2

A

2σ2

)
.

Plugging in dA = 1
2 (d′ − td′) and since d′ =

√
3nP ,

P1(NACK) ≤ exp
(
−n 3P

8σ2 (1− t)2
)
.

Feedback transmission Uν+1 is decoded by the transmitter
by comparing the received zν+1 with a large threshold Υ. A
“NACK” is declared if zν+1 > Υ, otherwise, an “ACK” is
declared. As in [19], Υ is chosen to be n, and one can verify
that with this choice, P1(“NACK” | ACK) and P1(“ACK” |
NACK) decay to zero in n faster than any exponential, for all
W ∈ {1, 2, 3}, i.e.

− lim
n→∞

1

n
lnP1(“NACK” | ACK) = +∞ (45)

− lim
n→∞

1

n
lnP1(“ACK” | NACK) = +∞. (46)

During the retransmission stage (the third and final stage of
the BB), the transmitter sends a length three codeword that
depends on the true message W and whether a “NACK” or
“ACK” is declared after the feedback stage. This codeword
is generated using (47), for the transmission of |W| + 1 = 4
messages from {W ∪ {0}}.

This encoding consists of an all zeros codeword associated
to an “ACK” event, and an index location based signaling
associated to a “NACK”, in which the codeword is non-zero
only in the location indexed by the true message W = w, i.e.
transmits a very high amplitude

√
∆′

Pw(“NACK”) in position w

(since Pw(“NACK”) is exponentially small) and zero in all
the remaining M − 1 = 2 positions, for some ∆′ > 0,

(Xn−2, Xn−1, Xn) =

√
∆′

Pw(“NACK”) · (0, 0, 0), if “ACK”√
∆′

Pw(“NACK”) · (1, 0, 0) , if “NACK” & W = 1√
∆′

Pw(“NACK”) · (0, 1, 0) , if “NACK” & W = 2√
∆′

Pw(“NACK”) · (0, 0, 1) , if “NACK” & W = 3.

(47)

At the end of the retransmission stage, the receiver compares
each of the signals received in the last M = 3 time slots, i.e.
(yn−2, yn−1, yn) with a very large threshold Υ = n, such that
for i ∈ {n− 2, n− 1, n}:

− lim
n→∞

1

n
lnP1

(
Yi < Υ | Xi =

√
∆′

P1(“NACK”)

)
= +∞

(48)

− lim
n→∞

1

n
lnP1 (Yi > Υ | Xi = 0) = +∞. (49)

Note from (47) and the assumption that W = 1 is sent, that
the received signal at the i-th position during the last M = 3
channel uses, Yi, is a random variable distributed in the case
of “ACK” as: Yi ∼ N

(
0, σ2

)
, for i ∈ {n − 2, n − 1, n};

and in the case of “NACK” as: Yi ∼ N
(√

∆′

P1(“NACK”) , σ
2
)

,

if i = n − 2, and Yi ∼ N
(
0, σ2

)
, if i ∈ {n − 1, n}. At

the end of the three stages, (48) and (49) guarantee that once
the retransmission sequence of length M = 3 is received, the
decoder can use the following rule to determine Ŵ as:

Ŵ =


W̃ , if ACK
1, if NACK and Yn−2 > Υ , Yn−1 < Υ , Yn < Υ

2, if NACK and Yn−2 < Υ , Yn−1 > Υ , Yn < Υ

3, if NACK and Yn−2 < Υ , Yn−1 < Υ , Yn > Υ,
(50)

where W̃ corresponds to the codeword decoded at the receiver
based on the sequence received in the first ν = n − 4 (more
generally n− (M + 1)) channel uses using minimum distance
decoding: W̃ = arg minw∈{1,2,3} ||xν(w)− yν ||.

2) Probability of error analysis: Assuming W = 1 was
sent, from the geometry of the problem in Figure 7, it suffices
to upper bound P(error) = P1(W 6= Ŵ ) as

P1(error)

=

≤1︷ ︸︸ ︷
P1(NACK)P1(“NACK”|NACK)

exceedingly small by (48) and (49)︷ ︸︸ ︷
P1(error|NACK , “NACK”)

+

≤1︷ ︸︸ ︷
P1(NACK)

exceedingly small by (46)︷ ︸︸ ︷
P1(“ACK”|NACK) ·

≤1︷ ︸︸ ︷
P1(error|NACK , “ACK”)

+

≤1︷ ︸︸ ︷
P1(ACK)

exceedingly small by (45)︷ ︸︸ ︷
P1(“NACK”|ACK) ·

≤1︷ ︸︸ ︷
P1(error|ACK , “NACK”)

+ P1(ACK)P1(“ACK” | ACK) · P1(error | ACK , “ACK”)
.
= P1(ACK)P1(“ACK” | ACK) · P1(error | ACK , “ACK”)

≤ P1(error | ACK , “ACK”) = P1(error | ACK). (51)

Equation (51) is similar to [19, Equation (132)]. To upper
bound P1(error | ACK) note first that an ACK implies the
received signal is within one of the three codeword regions
Aw (shown in Figure 7). Since W = 1, an error occurs only
if the received signal is in one of the two codeword regions
A2 or A3, and so

P1(error | ACK) =
P1(error,ACK)

P1(ACK)

=
P1 (yν ∈ A2 ∪A3)

P1 (yν ∈ A1 ∪A2 ∪A3)
. (52)

By symmetry, P1(yν ∈ A2) = P1(yν ∈ A3), and hence

P1 (yν ∈ A2 ∪A3) ≤ P1 (yν ∈ A2) + P1 (yν ∈ A3)

= 2P1 (yν ∈ A2) ≤ 2Q

(
dB
σ

)
≤ exp

(
−n 3P

8σ2
(1 + t)2

)
where, dB = 1

2 (d′+ td′) is as shown in Figure 7. We can fur-
ther upper bound (52) by lower bounding the denominator as
P1 (yν ∈ A1 ∪A2 ∪A3) ≥ P1 (yν ∈ A1) ≥ 1 − 2Q

(
dA
σ

)
≥

1− exp
(
−n 3P

8σ2 (1− t)2
)
.

Therefore, P1(error | ACK)
.
= exp

(
−n 3P

8σ2 (1 + t)2
)
.

Finally, the achievable error exponent for the BB, since
parameter t can be chosen sufficiently close to 1, is:

EEXP
BB ≥

3P

8σ2
(1 + t)2 =

3P

2σ2
. (53)
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Equation (53) shows that the BB leads to a four-fold gain over
non-feedback transmission under the AS power constraint in
(6), EAS(P, σ2) = 3P

8σ2 as a result of a more flexible power
constraint and noisy feedback. Next, following [19], we use
the BB for the transmission of M = 3 messages in a three-
stage communication scheme.

B. A transmission scheme based on the building block for the
transmission of M = 3 messages

This scheme comprises three stages: transmission, active
feedback and retransmission, lasting λ(n− 3), (1−λ)(n− 3)
and 3 channel uses respectively for λ ∈ (0, 1). We describe
each of them as follows:

1. Transmission: Message W is transmitted using the BB,
using power 1

λ (P − η) on the forward link and η
λ in the

feedback link. The transmitter reserves power 0 < η <
min{P, PFB} to provide feedback to the receiver’s transmis-
sion in the next stage. Denoting the estimation of the true
message at the end of this stage by W ′, from (53), the
probability of error of this stage is:

P1(W ′ 6= W )
.
= exp

(
−λ(n− 3)

3 1
λ (P − η)

2σ2

)
= exp

(
−n3(P − η)

2σ2

)
. (54)

2. Active feedback: W ′ is sent to the transmitter using
the BB. The receiver uses power 1

1−λ (PFB − η) and the
transmitter uses η

1−λ . The estimate of W ′ is W ′′ leads to the
probability of error, given by (53):

P1(W ′′ 6= W ′ |W ′) .
=

exp

(
−(1− λ)(n− 3)

3 1
(1−λ) (PFB − η)

2σ2
FB

)

= exp

(
−n3(PFB − η)

2σ2
FB

)
. (55)

3. Retransmission: In the retransmission stage, the trans-
mitter first compares W ′′ with W , and generates a length M
retransmission codeword as in the third stage of the BB, with
the single difference that the amplitude of the transmissions is√

∆′

P1(W ′′ 6=W ) . Finally, the receiver uses the decoding rule of

(56) (setting Ŵ = W ′) to estimate message W , based on the
length M = 3 codeword received during the retransmission
stage:

Ŵ =


W ′, if Yn−2 < Υ , Yn−1 < Υ , Yn < Υ

1, if Yn−2 > Υ , Yn−1 < Υ , Yn < Υ

2, if Yn−2 < Υ , Yn−1 > Υ , Yn < Υ

3, if Yn−2 < Υ , Yn−1 < Υ , Yn > Υ

. (56)

As in the BB decoding rule, each of the three signals Yi for
i = n − 2, n − 1, n, is compared with a threshold Υ = n.
Since Pw(W ′′ 6= W ) can be shown to be exponentially small,
it follows that

− lim
n→∞

1

n
lnP1

(
Yi < Υ | XM

i =

√
∆′

P1(W ′′ 6= W )

)
= +∞

(57)

− lim
n→∞

1

n
lnP1

(
Yi > Υ | XM

i = 0
)

= +∞. (58)

The probability of error of the scheme, considering decoding
rule (56), along with (57) and (58) is:

P1(error)

=

negligible by (58)︷ ︸︸ ︷
P1(error |W ′′ = 1,W ′ = 1) ·

≤1︷ ︸︸ ︷
P1(W ′′ = 1,W ′ = 1)

+

negligible by (57) and (58)︷ ︸︸ ︷
P1(error |W ′′ = 2,W ′ = 1) ·

≤1︷ ︸︸ ︷
P1(W ′′ = 2,W ′ = 1)

+ P1(error |W ′′ = 1,W ′ = 3) · P1(W ′′ = 1,W ′ = 3)

+ P1(error |W ′′ = 1,W ′ = 2) · P1(W ′′ = 1,W ′ = 2)

+

negligible by (57) and (58)︷ ︸︸ ︷
P1(error |W ′′ = 2,W ′ = 2) ·

≤1︷ ︸︸ ︷
P1(W ′′ = 2,W ′ = 2)

+

negligible by (57) and (58)︷ ︸︸ ︷
P1(error |W ′′ = 2,W ′ = 3) ·

≤1︷ ︸︸ ︷
P1(W ′′ = 2,W ′ = 3)

+

negligible by (57) and (58)︷ ︸︸ ︷
P1(error |W ′′ = 3,W ′ = 1) ·

≤1︷ ︸︸ ︷
P1(W ′′ = 3,W ′ = 1)

+

negligible by (57) and (58)︷ ︸︸ ︷
P1(error |W ′′ = 3,W ′ = 2) ·

≤1︷ ︸︸ ︷
P1(W ′′ = 3,W ′ = 2)

+

negligible by (57) and (58)︷ ︸︸ ︷
P1(error |W ′′ = 3,W ′ = 3) ·

≤1︷ ︸︸ ︷
P1(W ′′ = 3,W ′ = 3)

.
= P1(error |W ′′ = 1,W ′ = 2) · P1(W ′′ = 1,W ′ = 2)

+ P1(error |W ′′ = 1,W ′ = 3) · P1(W ′′ = 1,W ′ = 3)

≤ P1(W ′′ = 1,W ′ = 2) + P1(W ′′ = 1,W ′ = 3).

Since P1(W ′′ = 1,W ′ = 2) = P1(W ′′ = 1,W ′ = 3),

P1(error) ≤ 2P1(W ′′ = 1,W ′ = 2).

= 2P(W ′′ = 1|W ′ = 2,W = 1) · P(W ′ = 2|W = 1)

.
= exp

(
−n3(PFB − η)

2σ2
FB

)
exp

(
−n3(P − η)

2σ2

)
(59)

= exp

(
−n
(

3(P − η)

2σ2
+

3(PFB − η)

2σ2
FB

))
, (60)

where (59) results from using (54) and (55). Then, (60) implies
that EEXP ≥ 3

2

(
P
σ2 + PFB

σ2
FB

)
is achievable since η can be chosen

sufficiently small.

VI. ON THE LARGEST NUMBER OF TRANSMITTED
MESSAGES M

The main restriction on M comes from the use of simplex
codes for both the one-way and two-way AWGN channels.
These codes require all symbols to have the same energy
and pairwise distance. It is known [46], [47] [48, pp. 65–67,
Proposition 4.1] that the unique solution to placing M ≤ n+1
equally likely points on the surface of a unitary sphere in Rn
such that the distance between any two points is maximized
corresponds to a regular simplex. Thus, codewords of length
n may be used to transmit a point from a regular simplex code
with M messages as long as M ≤ n+ 1. The regular simplex
code is not necessarily optimal in the sense of minimizing
the overall probability of error for the AWGN under the AS
constraint, but it has been shown to be globally optimal in the



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3066855, IEEE
Transactions on Information Theory

16

sense of maximizing the union bound on the error probability
for all SNR [49], as it maximizes the minimum distance
between codewords.

A. Bounds on M for the AS constraint

In Theorem 2 the active feedback transmits the set of
codeword pairs that is most likely to have occurred in the
first stage. This feedback stage becomes a bottleneck, as this
number is L =

(
M
2

)
= M(M−1)

2 , and hence requires at least
L−1 channel uses when using a simplex code for transmission.
In the first stage, the number of dimension of the simplex
code is λ(n − 1) = M − 1. The total block length n is
thus λ(n − 1) + (1 − λ)(n − 1) + 1 = n, which becomes
(M − 1) +

(
M2−M

2 − 1
)

+ 1 = n. The above result can be
represented as the quadratic equation M2 +M− (2+2n) = 0

whose positive root is M =
√

8n+9−1
2 =

√
2n+ 9

4 −
1
2 .

As n becomes large, M ≈
√

2n may thus be supported for
λ ≈ 2√

2n
.

In the case of non-linear passive feedback of Theorem 1,
M can be as large as n by setting the duration of the retrans-
mission stage to one channel use and leaving n − 1 channel
uses for the simplex code of the transmission/passive-feedback
stage, thus leaving room for exactly M = n symbols. Notice
that error exponent of the passive linear scheme of Theorem
3 deteriorates for large M , and hence also in Theorem 7.

For the two-way channel, recall Theorems 5 and 6, and the
block diagrams depicted in Figure 3 of Section II-B where both
terminals transmit the same number of messages M . We first
consider passive feedback in Theorem 5. This scheme allocates
the first λn slots to the transmission of message W2 over the
1← 2 channel without feedback. The remaining channel uses
are used for the transmission of W1 in the opposite (weaker)
direction with the help of passive feedback using two stages:
transmission/passive-feedback in (1 − λ)n − 1 channel uses,
and retransmission in a single channel use (see [18, Section
II-A]). The total block length n is λn+[(1−λ)n−1]+1 = n.
Since a simplex code for M symbols in each direction requires
M − 1 dimensions, it follows that the number of messages to
be transmitted can be as large as M ≈ n

2 , with λ ≈ n/2.
For active feedback, consider the block diagram of Figure

3 (b). Note that the transmission of message W2 without
feedback over the stronger 1← 2 direction, and the feedback-
free transmission of the first stage of the active feedback
scheme employed in the weaker 1→ 2 direction (for message
W1) occur simultaneously over λ(n− 1) channel uses. These
transmissions are based on a simplex code of M symbols and
therefore λ(n−1) = M−1. The active feedback stage occurs
in the next (1− λ)(n− 1) channel uses, followed by a single
channel use for the retransmission, see (39). As in the one-
way channel, the allowable number of messages is mainly
determined by the active feedback stage, which uses the largest
fraction of the block length n. Thus, again, M ≈

√
2n.

B. Bounds on M for the EXP constraint

For the scheme presented in Theorem 4 the largest value that
M can take is determined by the duration of the retransmission

stage of the BB, which is used in the (overall) three-stage-
scheme. For the transmission of M messages, the BB requires
M − 1 channel uses to support the simplex code of the
transmission stage, a single channel use for the feedback
signaling, and finally, a length M codeword for retransmission.
Thus, as a function of M , the block length of the BB is 2M . In
the three-stage-scheme, the BB is used two times: to transmit
W in the forward direction; and to feed back the estimate
W ′ of W to the transmitter. Then, a length M codeword is
used in the third stage. Hence, the number of channel uses
required for this scheme is 2M + 2M +M ≤ n, from which
we conclude that M ≤ 1

5n. This also holds for the two-way
communication scheme in Theorem 8.

The results summarizing how large M may be (as n→∞)
are in Table I.

TABLE I
SUMMARY OF RESULTS FOR THE LARGEST M IN EACH ACHIEVABILITY

SCHEME

Power Contraint FB-type One-Way Two-Way
AS NL-Passive n n

2

NL-Active
√

2n
√

2n
EXP Active n

5
n
5

VII. NUMERICAL SIMULATIONS

We numerically evaluate the newly derived inner bounds
for different SNR conditions and number of messages. Simu-
lations include the feedback-free and perfect feedback achiev-
able error exponents (or regions in case of the two-way
channel) as references.

A. Simulations for the one-way AWGN channel

Figure 8 depicts achievable error exponents under the AS
constraint as a function of the noise variance in the feedback
link for σ2

FB ∈ [10−7, 1], M = 3, P = PFB = 1, and σ2 = 1.
The figure on the left utilizes a linear scale for σ2

FB on the
horizontal axis; the right utilizes a logarithmic one. The plots
include the upper bound under perfect feedback, given in (7)
and corresponding to P

2σ2 = 0.5; and the lower bound in the
absence of feedback, given in (6), corresponding to 3P

8σ2 =
0.375, which are shown with a dashed and a dotted black
lines respectively. The linear and non-linear passive feedback
coding schemes from [18] (modified in this work to satisfy
an AS power constraint in both directions as in Theorems
3 and 1) are plotted in continuous red and dash-dotted blue
lines respectively, whereas the active feedback coding scheme
proposed in Theorem 2 is plotted in gray.

B. Simulations for the two-way AWGN Channel

1) Numerical simulation for M = 3 under AS power
constraint: This simulation illustrates how our schemes lead
to an achievable EER that shows an improvement over the
feedback-free EER of the weaker direction, at the cost of a
reduction of the one in the stronger direction. The forward and
feedback SNRs used in Figure 9 are P1

σ2
2

= 1 and P2

σ2
1

= 1000
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Fig. 8. Achievable error exponent under AS: coding schemes comparison for
M = 3, where σ2

FB1. ≈ 6.73 × 10−3 and σ2
FB2. ≈ 35.71 × 10−3. Points

(a) and (b) correspond to the pair of SNR values we evaluated in Figure 9
for two-way communication.

for the left, and P2

σ2
1

= 10000 for the right plot (these reflect the
values (a) and (b) for σ2

FB in Figure 8). Both figures include the
non-feedback inner bound of Proposition 1 in solid black; the
outer bound of Proposition 3 in dashed orange; the non-linear
passive feedback (Theorem 5) in dotted blue; the non-linear
active feedback (Theorem 6) is dashed red; the linear feedback
scheme of Theorem 7 in dash-dotted magenta. Consider the
1→ 2 direction and observe that the achievable error exponent
of the non-linear active feedback scheme is higher than the one
achieved by the non-linear passive feedback scheme. At these
SNRs, the linear passive feedback scheme achieves a larger
error exponent the 1 → 2 direction at the cost of a larger
decrease of the error exponent in the 1 ← 2 direction. Such
high error exponents are possible only when one direction
is much stronger than the other. See Figure 8 for the one-
way channel and observe that the linear scheme produces
error exponent gains over feedback-free transmissions as the
feedback noise decreases, i.e. when σ2

FB ≤ σ2
FB2 .

Fig. 9. Error exponent region for the two-way AWGN channel under the AS
constraint and the transmission of three messages.

Figure 10 shows the achievable EER obtained by Theorems
5, 6 and 7 for different values of M . Note that as M
increases, the achievable feedback-free error exponent in both
directions decreases until 1/4 of the corresponding channel
SNR. This numerical evaluation shows the active feedback
scheme attains error exponents above those attained with the
non-linear passive feedback even as M increases. Moreover,
this figure visualizes how the error exponent achieved with the
linear passive feedback scheme is reduced dramatically as M
increases.

2) Numerical simulation for M under EXP power con-
straint: Figure 11 shows the achievable EER for the two-
way AWGN channel with active noisy feedback under the
EXP power constraint for increasing M . The largest region is
attained for the transmission of M = 2. Note that the red line
corresponds to a large value of M and that even for this case,
the EXP constraints yield an achievable region that completely
contains what is achievable under the AS, which is shown with
a solid black line at the bottom left square region.
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Fig. 10. Achievable error exponent regions provided by Theorems 5, 6 and
7 for different values of M .

E
X

P

EXP

M=2

M=3

M=4

M=5

M=6

M=7

           M =100

Outer bound
AS

Fig. 11. Achievable error exponent region for the two-way AWGN channel
with active noisy feedback under the EXP power constraint and symmetric
SNR, Theorem 8.

VIII. CONCLUSIONS

Achievable error exponents for the one-way with noisy,
power constrained feedback, and two-way AWGN channel
under the AS and EXP power constraints were derived for
the transmission of a finite number of messages. Under the
AS power constraint, noisy feedback only appears (based
on achievability results) to provide error exponent gains over
feedback-free transmission when the feedback channel SNR is
(considerably) larger than the forward channel SNR. Proving
this is an open problem. In the two-way setting, we demon-
strated achievable error exponent pairs that illustrate a trade
off between allocating resources towards one direction’s trans-
mission versus sending feedback for the other. For the EXP
constraint in particular, finding an achievable error exponent
region that outperforms time sharing is an open problem.
Deriving tighter outer bounds also remains to be done.

APPENDIX A
PROOF OF THEOREM 1 FOR PASSIVE NON-LINEAR

FEEDBACK UNDER THE AS CONSTRAINT.

We adjust the non-linear passive feedback scheme of
[18] by feeding back a symbol-by-symbol scaled output
signal that ensures that the AS constraints are met for
both forward (P

(∑n
k=1X

2
k ≤ nP

)
= 1) and feedback

(P
(∑n

k=1 U
2
k ≤ nPFB

)
= 1) directions. Passive feedback is

meant here to denote feedback of the form Uk = αYk, where
α is an optional scaling factor. The scheme of [18, Theorem
1] uses α = 1. First, we show that

P

(
n∑
k=1

Y 2
k > nP + 5σ2n+ σn

√
P

)
→ 0, as n→∞,

which follows as

P

(
n∑
k=1

Y 2
k > nP + 5σ2n+ σn

√
P

)

= P

(
n∑
k=1

(
X2
k +N2

k + 2XkNk
)
> nP + 5σ2n+ σn

√
P

)

≤ P

(
n∑
k=1

(
X2
k +N2

k

)
> nP + 5σ2n

)

+ P

(
n∑
k=1

2XkNk > σn
√
P

)

≤ P

(
n∑
k=1

X2
k > nP

)
+ P

(
n∑
k=1

N2
k > 5σ2n

)

+ P

(
n∑
k=1

2XkNk > σn
√
P

)
The first term vanishes given that the AS constraint imposed
in the forward channel inputs P

(∑n
k=1X

2
k ≤ nP

)
= 1 is

satisfied. The second vanishes as

P

(
n∑
k=1

N2
k > σ2(n+ 2

√
n2 + 2n)

)

= P

(
n∑
k=1

(
Nk
σ

)2

≥ 5n

)
≤ exp (−n) (61)

as
∑n
k=1

(
Nk
σ2

)2
corresponds to a chi-square random variable

with n degrees of freedom χ2
n. Its tail may be upper bounded

using the Laurent-Massart upper bound given in [50, Lemma
1], that gives an exponential upper bound for any random
variable U ∼ χ2

D with D degrees of freedom, for any positive
x as:

P
(
U −D ≥ 2

√
Dx+ 2x

)
≤ exp (−x). (62)

Thus, (61) results from (62), by taking U =
∑n
k=1

(
Nk
σ

)2
,

D = n, and x = n. The third term vanishes as

P

(
n∑
k=1

2XkNk ≥ σn
√
P

)
= Q

(
σn
√
P

2√
σ2
∑n
k=1X

2
k

)
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(a)

≤ Q

(
n
√
P

2
√
nP

)
= Q

(√
n

2

)
(b)

≤ 1

2
exp (−n/2)

where (a) follows by noticing that
∑n
k=1XkNk ∼

N
(
0, σ2

∑n
k=1X

2
k

)
since the Nk’s are i.i.d. for all k, and

by the forward channel input constraint
∑n
k=1X

2
k ≤ nP and

(b) from the Chernoff bound for the Q-function: Q(x) ≤
1
2 exp

(
−x2/2

)
.

We alter the scheme of [18] by sending Uk = αYk, for

α =

√
nPFB

nP + 5σ2n+ σn
√
P

=

√
PFB

P + 5σ2 + σ
√
P

which will guarantee the AS power constraint of the feedback
direction P

(∑n
k=1 U

2
k ≤ nPFB

)
= 1 is met. We next consider

the effect this has on the error exponent.
The error exponent achieved by the passive non-linear

scheme in [18] may be expressed for general M as in (10),
which was proven in detail in [18] for M = 3 as:

EAS-NL
FB

(
M,P, σ2, s

)
≥

min


P

2σ2

(
s2 − 2s+ 4

s2 − 2s+ 5

)
,
P

σ2
FB

3

8

(
s2

s2 − 2s+ 5

)
︸ ︷︷ ︸

passive feedback

 .(63)

The term on the right of (63) corresponds to the error
exponent of the passive feedback stage, and results from an
upper bound on the probability of event Ẽ12 in [18, Eq. (8)]:

P(Ẽ12) ≤ 2Q

(
d6

σFB

)
, (64)

where d6 = s
√

3λnP
16 is indicated in [18, Figure 6(b)] (and

where eventually λ = 4
s2−2s+5 is chosen. The term on the

right of (63) follows by further upper bounding (64) using the
Chernoff bound.

When the feedback signals Uk = αYk are scaled, so is the
distance d6 used in (64), which is now denoted as d′6 and given

by d′6 = αs
√

3nP
4(s2−2s+5) = s

√
3nP

4(s2−2s+5)

(
PFB

P+5σ2+σ
√
P

)
.

Hence, the error exponent of the passive feedback stage is
given by:

P(Ẽ12) ≤ 2Q

(
d′6
σFB

)
= 2Q

(
s

σFB

√
3nP

4(s2 − 2s+ 5)

(
PFB

P + 5σ2 + σ
√
P

))

≤ exp

[
−n P

σ2
FB

3

8

(
s2

s2 − 2s+ 5

)
PFB

P + 5σ2 + σ
√
P

]
.

Since the forward error exponent (the left term) remains the
same, the overall error exponent expression obtained is (63).
Applying the scaling factor for general M we obtain (13).

APPENDIX B
PROOF OF THEOREM 2 FOR M ≥ 3 MESSAGES

We provide an abbreviated generalization to M > 3 that
mimics the proof for three messages. The distances utilized in
the proof of Theorem 2 are generalized to any M using the
mapping (65) introduced in [18]:

d
(3)
j = d

(M)
j

√
3(M − 1)/(2M). (65)

Consider the transmission of M messages chosen equally
likely from the set W = {1, · · · ,M}, and assume message
W = 1 is sent. For the transmission stage, codewords of length
λ(n − 1) are generated using the simplex code C(W, βnP )
defined in (3) and decoded using protection regions defined
in (34) with w,w′, w′′ ∈ [1 : M ]. The probability of the er-
ror event ET =

{
Y λ(n−1) ∈

⋃
w 6=1Bw ∪

(⋃
w,w′ 6=1A

′
ww′

)}
is upper bounded by P(ET) ≤ M2Q

(
d

(M)
5

)
≤

M2

2 exp
(
−n Mβ

12(M−1)
P
σ2 (s2 − 2s+ 4)

)
, where d

(M)
5 is ob-

tained from d5 as shown in Figure 6, and A′ww′ is defined in
(35), following [18, Section II-B] with w,w′, w′′ ∈ [1 : M ].

In the active feedback stage, the most likely codeword pair
(in lexicographical order) q is returned to the transmitter. As
before, the antipodal signaling of the retransmission stage
sends a positive signal to indicate the true message is the
first of the pair, and a negative signal to indicate the true
message is the second. Since there are

(
M
2

)
lexicographically

ordered pairs, the number of data / constellation points of the
simplex code used in the active feedback stage is

(
M
2

)
, and

the probability of error can be upper bounded for the event
EAFB = {q 6= q}, using (6) as in (66). Note that since this
stage lasts for (1− λ)(n− 1) channel uses, the receiver may
scale up its transmissions by 1/(1−λ) to use all the available
power and satisfy the AS power constraint. Hence, we obtain

P(EAFB) ≤ (M − 1) ·Q

√√√√n
PFB

σ2
FB

(
M
2

)
2
((
M
2

)
− 1
)
 (66)

≤ M − 1

2
exp

−nPFB

σ2
FB

(
M
2

)
4
((
M
2

)
− 1
)
 .

Finally, for the retransmission stage, the probability
of occurrence of the event ERT = {(W ∈ q =
q) ∩ (Ŵ 6= W )} can be upper bounded as P(ERT) =

Q

(
−
√(

1− β M−2
2(M−1)

)
PFB
σ2

FB

)
1
2 exp

[
−n P

2σ2

(
1− β M−2

2(M−1)

)]
.

Hence, the overall error exponent is:

EAS
12 = lim sup

n→∞
− 1

n
lnP(error)

≥ lim sup
n→∞

− 1

n
max {lnP(ET), lnP(EAFB), lnP(ERT)}

≥ min

β MP

12σ2(M − 1)
(s2 − 2s+ 4),

PFB

σ2
FB

(
M
2

)
4
((
M
2

)
− 1
) ,

P

2σ2

(
1− β M − 2

2(M − 1)

)}
.
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Since
(
M
2

)
= M(M−1)

2 , by equating the first and third
arguments, β = 6(M−1)

M(s2−2s+4)+3(M−2) , thus yielding (14).

APPENDIX C
PROOF OF THEOREM 3 FOR PASSIVE LINEAR FEEDBACK

UNDER THE AS CONSTRAINT

The linear passive feedback coding scheme of [18, Theorem
2] is slightly modified in order to ensure that the AS constraint
in the feedback link is met. To remain a passive scheme, the
feedback signal is assumed to be the forward signal scaled by
the factor α as Ui = αYi. The forward encoding function is
thus

X1(w) =

{
L+1−w

L

√
λnP if M = 2L+ 1,

L+1/2−w
L

√
λnP if M = 2L,

and Xi = (1 + δ)(Ni−1 + 1
αNFBi−1

) for 2 ≤ i ≤ η, where
η = η(w,Nn, Nn

FB) is the largest k ≤ n̄ =
√
n such that:∑k

i=1X
2
i ≤ nP . Each Xi is obtained from the feedback

direction channel output Zi−1, first by a scaling of 1/α,
followed by a subtraction of the previously sent Xi−1. Hence:
Xi+1 = 1

αZi − Xi. Transmissions in the feedback direction
are given by:

Ui =


α (X1 +N1) , if i = 1

α(1 + δ)(Ni−1 + 1
αNFBi−1

) + αNi, if 2 ≤ i ≤ k
αNi, if k + 1 ≤ i ≤ n̄.

(67)
Equation (19) is obtained following similar steps as those in
[18], but considering the channels’ inputs defined above, and
choosing (1 + δ)2 = 1 +

√
4L2σ2

FB/α
2

σ2+
σ2FB
α2

.

The scaling factor α is obtained such that, for the feedback
channel inputs Ui = αYi:

P

(
n∑
i=1

U2
i > nPFB

)
→ 0, as n→∞. (68)

To prove (68), we follow a similar approach as in Appendix
A to first quantify the energy used by the receiver to provide
feedback. Using (67) with k = n̄, we have that:
n∑
i=1

U2
i

= U2
1 +

n̄∑
i=2

U2
i

= α2
[
X2

1 +N2
1 + 2X1N1

]
+ α2

n̄∑
i=2

{[
(1 + δ)(Ni−1 +

1

α
NFBi−1

)

]2

+N2
i + 2

[
(1 + δ)(Ni−1 +

1

α
NFBi−1)

]
Ni

}
= α2X2

1 + 2α2X1N1 + α2
n̄∑
i=1

N2
i

+ 2α2(1 + δ)

(
n̄−1∑
i=1

NiNi+1 +
1

α

n̄−1∑
i=1

NFBiNi+1

)

+ α2(1 + δ)2

(
n̄−1∑
i=1

N2
i +

1

α2

n̄−1∑
i=1

N2
FBi + 2

1

α

n̄−1∑
i=1

NiNFBi

)
.

We upper bound P
(∑n

i=1 U
2
i > nPFB

)
by choosing parame-

ters α and λ such that nPFB =
∑8
k=1 Ck, where:

C1 = nλPα2

C2 = n2α2
√
λPσ

C3 = n̄α2σ2
[
1 + 2

√
σ2 + 2σ2

]
C4 = α2(1 + δ)σ2

[
(n̄− 1) + 2

√
(n̄− 1)n̄+ 2n̄

]
C5 =

α

2
(1 + δ)

(
σ2 + σ2

FB

) [
(n̄− 1) + 2

√
(n̄− 1)n̄+ 2n̄

]
C6 = α2(1 + δ)2σ2

[
(n̄− 1) + 2

√
(n̄− 1)n̄+ 2n̄

]
C7 = (1 + δ)2σ2

FB

[
(n̄− 1) + 2

√
(n̄− 1)n̄+ 2n̄

]
C8 =

α

2
(1 + δ)2

(
σ2 + σ2

FB

) [
(n̄− 1) + 2

√
(n̄− 1)n̄+ 2n̄

]
.

Then,

P

(
n∑
i=1

U2
i > nPFB

)

= P

(
α2X2

1 + 2α2X1N1 + α2
n̄∑
i=1

N2
i +

2α2(1 + δ)
n̄−1∑
i=1

NiNi+1 + 2α(1 + δ)
n̄−1∑
i=1

NFBiNi+1+

α2(1 + δ)2
n̄−1∑
i=1

N2
i + (1 + δ)2

n̄−1∑
i=1

N2
FBi+

2α(1 + δ)2
n̄−1∑
i=1

NiNFBi >
8∑
k=1

Ck

)
≤ P

(
α2X2

1 > C1

)
+ P

(
2α2X1N1 > C2

)
+ P

(
α2

n̄∑
i=1

N2
i > C3

)

+ P

(
2α2(1 + δ)

n̄−1∑
i=1

NiNi+1 > C4

)

+ P

(
2α(1 + δ)

n̄−1∑
i=1

NFBiNi+1 > C5

)

+ P

(
α2(1 + δ)2

n̄−1∑
i=1

N2
i > C6

)

+ P

(
(1 + δ)2

n̄−1∑
i=1

N2
FBi > C7

)

+ P

(
2α(1 + δ)2

n̄−1∑
i=1

NiNFBi > C8

)
→ 0, as n→∞,

where the last step follows since terms Ck’s are appropriately
computed / chosen (as in the previous Appendix, making
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use of the Laurent-Massart bound from [50] for the terms
resulting in a χ2 distribution, and given that X2

1 ≤ λnP ) to
ensure that each term in the sum above vanishes as n → ∞.
The parameter α is chosen such that nPFB =

∑8
k=1 Ck =

nλPα2 + n2α2
√
λPσ + n̄α2σ2

[
1 + 2

√
σ2 + 2σ2

]
+[

(n̄− 1) + 2
√

(n̄− 1)n̄+ 2n̄
]
K(α), where, n̄ =

√
n

and K(α) = (1 + δ)
[
α2σ2 + α

2

(
σ2 + σ2

FB

)]
+ (1 +

δ)2
[
α2σ2 + σ2

FB + α
2

(
σ2 + σ2

FB

)]
, with the choice of

λ =

(
1 +

√
σ2+

σ2FB
α2

4L2σ2
FB/α

2

)−1

, and L = bM/2c, which leads to

(19).

APPENDIX D
PROOF OF THEOREM 4 FOR M ≥ 3 MESSAGES

We generalize this result to any finite number of messages
M . First, we show the generalization of the building block op-
eration, followed by its use in the three-stage communication
scheme.

A. Building block for general finite M ≥ 3

This generalization is based on the use of a simplex code
of M messages for the transmission and feedback stages,
with symbols having energy nP and nPFB respectively. For
M = 3 the simplex code lives in 2-D space; for general
M the constellation lives in M − 1 dimensional space. For
notational convenience, let distances shown in Figure 7, i.e. d′

for M = 3, be denoted as d′(3). Then, the equivalent distance
for general M is denoted as d′(M) and obtained from (65). The
building block operation for M > 3 remains unchanged. Thus,
it suffices to prove that the probability of seeing a NACK is
still exponentially small.

1) NACK (M − 1)-volume and probability of NACK event:
For M symbols, a simplex code lives in (M −1)-dimensional
space and the NACK bands become (M − 1)-dimensional
volumes defined as the complement of the union of the ACK
volumes:

⋃M
i=1Ai, where each Ai is defined by extension of

(43) as follows:
Recall Figure 7 used for M = 3. To characterize each

of the M − 1 hyperplanes that describe the ACK region
Ai around codeword xν(i) of length ν = n − (M + 1)
(each hyperplane separating codewords xν(i) and xν(j) for
j 6= i ∈ {1, · · · ,M}), a point Hi := (

√
nP −dC)ui (ui is the

unitary vector in the direction of codeword xν(i), distance dC
is derived geometrically from distance dA and characterized
by parameter t and angle αC which depends on the geometry
of the codewords constellation) and a vector normal to each
hyperplane, wij := xν(i)− xν(j) are needed.

Extending (43), each hyperplane bounding ACK region
Ai is given by: {x ∈ Rν | 〈wijx〉 = bi} for j 6= i ∈
{1, · · · ,M}, where similarly, bi = 〈wij , Hi〉. The ACK
region A1 for general M is hence defined as A1 =⋂M
j=2 {yν := y : 〈w1j ,y〉 ≥ 〈w1j , H1〉}, and the definitions

for the remaining M − 1 regions follow similarly.
Now assume that W = 1 is transmitted, we first prove

the NACK event occurs with exponentially small probability.

Since P1(NACK) = 1− P1(ACK), we obtain a lower bound
on P1(ACK) to upper bound P1(NACK). An ACK event is
declared whenever the received signal yν lies within one of
the Ai regions:

P1(ACK) = P1(yν ∈
M⋃
i=1

Ai)

≥ P1(yν ∈ A1) ≥ 1−

[
(M − 1)Q

(
d

(M)
A

σ

)]
,

where d(M)
A denotes the distance between symbol W = 1 and

the NACK volume closest boundary, i.e. d(M)
A = (1− t)d

′(M)

2 .
Then,

P1(yν ∈ A1) ≥ 1− (M − 1)

2
exp

{
−n P

4σ2

M

M − 1
(1− t)2

}
.

(69)

Therefore, the upper bound on P1(NACK) ≤ 1 − P1(ACK)
can be written as:

P1(NACK) ≤ (M − 1)Q

(
d

(M)
A

σ

)

≤ M − 1

2
exp

(
−

(d
(M)
A )2

2σ2

)

≤ M − 1

2
exp

(
−n 3P

2σ2

(
M

6(M − 1)

)
(1− t)2

)
,

where the final equality follows from the mapping in (65), and
the equivalent distance d(M)

A = (1− t)
√

3nP
√

M
6(M−1) .

2) Probability of error analysis for the building block for M
messages: Once the transmitter has sent codeword xν(w), the
receiver determines whether yν lies inside the NACK volume
or in one of the ACK regions Ai. Then, the signaling of (44)
is used to report this result to the transmitter. Depending on
the decoding result, “NACK” or an “ACK”, the length M
retransmission codeword follows exactly as for M = 3 . Then,
a decoding error may occur only when the receiver declares
an ACK, and the decoding decision is solely based on yν .

P1(error|ACK) =
P1(error,ACK)

P1(ACK)

=
P1

(
yν ∈

⋃M
i=2Ai

)
P1

(
yν ∈

⋃M
i=1Ai

) ≤ ∑M
i=2 P1 (yν ∈ Ai)
P1 (yν ∈ A1)

,

where the last inequality comes from the lower bound
P1

(
yν ∈

⋃M
i=1Ai

)
≥ P1 (yν ∈ A1) for the denominator and

the union bound on the numerator. Next, noting that for all
i ≥ 2, (see Figure 7):

P1(yν ∈ Ai) ≤ Q

(
d

(M)
B

σ

)
, (70)

where d(M)
B is the distance between symbol W = 1 and the

furthest NACK region boundary: d(M)
B = (1 + t)d

′(M)

2 = (1 +

t)
√

3nP
√

M
6(M−1) . Then, by (69) and (70), and the Chernoff
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bound for the Q-function:

P1(error|ACK) ≤
M−1

2 exp
{
−n P

4σ2
M
M−1 (1 + t)2

}
1− M−1

2 exp
{
−n P

4σ2
M
M−1 (1− t)2

} . (71)

After some algebraic manipulation and for large n, (71) leads
to:

P1(error|ACK)
.
=
M − 1

2
exp

{
−n P

4σ2

M(1 + t)2

M − 1

}
.(72)

Since parameter t can be chosen to be very close to 1, the
achievable error exponent of the BB may be bounded as

EEXP
BB ≥

P

σ2

M

M − 1
. (73)

Note that for M = 2, (73) leads to the result of [19]: EEXP ≥
2P
σ2 ; and for M = 3, it leads to (53): EEXP ≥ 3P

2σ2 .
B. A three stage transmission scheme based on the building
block for M messages

In general, the three stage operation remains unchanged. In
the transmission stage, W is transmitted using the BB, where
the transmitter uses power P−η

λ and receiver η
λ . Note that

P1(W ′ 6= W ) = P2(W ′ 6= W ) = · · · = Pw(W ′ 6= W ).
The receiver estimates W ′ with a probability of error given
by (72):

P1(W ′ 6= W )

≤ M − 1

2
exp

{
−λ(n−M)

1
λ (P − η)

4σ2

M(1 + t)2

M − 1

}
.
=
M − 1

2
exp

{
−n (P − η)

4σ2

M(1 + t)2

M − 1

}
.

For the feedback stage, W ′ is sent to the transmitter using
the BB in (1 − λ)(n −M) channel uses. Here, the receiver
uses power PFB−η

1−λ and transmitter η
1−λ . By the simplex code

geometry, P1(W ′′ 6= W ′ | W ′) = P2(W ′′ 6= W ′ | W ′) =
· · · = Pw(W ′′ 6= W ′ |W ′). The feedback transmission yields
a probability of error given by (72):

P1(W ′′ 6= W ′ |W ′)

≤ M − 1

2
·

exp

{
−(1− λ)(n−M)

1
1−λ (PFB − η)

4σ2
FB

M(1 + t)2

M − 1

}
.
=
M − 1

2
exp

{
−n (PFB − η)

4σ2
FB

M(1 + t)2

M − 1

}
.

In the retransmission stage the transmitter compares W ′′

with W , and generates a retransmission codeword of length
M based on the index location code directly extended from
(47). The final decoding rule follows directly from extending
(50) to M > 3, noting that (57) and (58) still hold.

The probability of error of this scheme is dominated by
the events where an incorrect symbol is decoded after the
transmission stage, and the feedback stage leads to incorrectly
decoding W ′′ as the true message. It can be shown that:
P1(error) ≤

∑M
k=2 P1(W ′′ = 1,W ′ = k). Since P1(W ′′ =

1,W ′ = 2) = P1(W ′′ = 1,W ′ = 3) = ... = P1(W ′′ =
1,W ′ = M), we have

P1(error)
≤ (M − 1)P(W ′ = 2|W = 1)P(W ′′ = 1|W ′ = 2,W = 1)

= (M − 1)
M − 1

2
exp

{
−n (P − η)

4σ2

M

M − 1
(1 + t)2

}
· 1

2
exp

{
−n (PFB − η)

4σ2
FB

M

M − 1
(1 + t)2

}
≤ (M − 1)2

4
· exp

[
−nM(1 + t)2

M − 1

(
P − η
4σ2

+
PFB − η

4σ2
FB

)]
.

To conclude, the following error exponent is achievable for η
sufficiently small and t very close to 1:

EEXP
FBEXP

(
M,P, σ2, PFB, σ

2
FB

)
≥ M

M − 1

(
P

σ2
+

P2

σ2
FB

)
.
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