
APUF Faults: Impact, Testing, and Diagnosis
Yeqi Wei, Tim Fox, Vincent Dumoulin, Wenjing Rao, Natasha Devroye

Department of Electrical and Computer Engineering
University of Illinois Chicago, Chicago, IL 60607, USA

Email: {ywei30, tfox8, vdumou2, wenjing, devroye}@uic.edu

Abstract—Arbiter Physically Unclonable Functions (APUFs) are

hardware security primitives that exploit manufacturing random-

ness to generate unique digital fingerprints for ICs. This paper

theoretically and numerically examines the impact of faults native

to APUFs – mask parameter faults from the design phase, or

process variation (PV) during the manufacturing phase. We model

them statistically, and explain quantitatively how these faults affect

the APUF bias and uniqueness. On a single APUF instance, these

faults manifest as outlier delta elements in magnitude, thus we

focus on such abnormal delta elements. To detect such bad APUF

instances and diagnose the abnormal delta elements, we propose a

testing methodology which partitions a random set of challenges so

that a specific delta element can be targeted, forming a perceivable

bias in the responses over these sets. This low-cost approach

is highly effective in detecting and diagnosing bad APUFs with

abnormal delta element(s).

Index Terms—arbiter PUF, arbiter PUF faults, testing, diagnosis

I. INTRODUCTION

APUFs are promising low-cost hardware security primitives.
In an APUF, a series of track pairs with equal delay are
designed which, due to the randomness of PV, differ slightly in
values. Two racing delay paths that depend on a binary input
vector, or “challenge” c 2 {0, 1}n are fed into an arbiter. The
output is a binary “response” R(c) 2 {±1} that depends on
which racing path arrives first. This makes it possible to form
a unique truth table for each manufactured PUF instance, all
from an identical design mask. This truth table consists of 2n

challenge-response pairs (CRPs), (c, R(c)). An APUF is an
example of a “strong” PUF that offers CRPs exponential in the
number of delay elements, and it is a basic building block for
more complex PUFs used in device authentication [1]–[3].

A. Motivation

In contrast to conventional IC production, PUF production
relies on and exploits PV in the manufacturing process, thus
judging whether an individual or a batch of manufactured PUFs
is good or bad presents its unique features and challenges, and
effective test methodologies rely on statistical fault models that
are native to PUFs. Prior work on APUFs and their many
variations assumed the delay elements all follow the same
Gaussian distribution [4]–[6]. We ask what happens when this
assumption is not true, or when a zero-mean delta element has a
particularly large or “abnormal” magnitude. The effect of such
faults native to APUFs has not been studied before, thus this

* This work was partially supported by NSF under award 1909547. The
contents of this article are solely the responsibility of the authors and do not
necessarily represent the official views of the NSF.

paper establishes statistical models for these faults, analyzes
their impact on APUF qualities, and proposes a method to test
and pinpoint such faults in each individual PUF instance.

B. Prior work
Several papers [7]–[9] have designed tests for APUFs to

identify, for example: (i) predictability, (ii) sensitivity to com-
ponent accuracy, (iii) susceptibility to reverse engineering, (iv)
stability, and (v) randomness. In [9], two testing methods
using correlation spectra and Welsh’s t-test are presented to
characterize both good (random-looking) and bad (infected by
faults) APUFs. This is different than our focus on testing bad
APUFs with abnormal delay elements and diagnosing their
locations. The work most similar in spirit is [10], which focuses
on identifying stuck-at and delay (not to be confused with delay
element) faults in APUFs. None of these prior works focus on
testing and diagnosing bad APUFs with outlier delta elements,
a novel fault model native and relevant to APUFs.

C. Contribution
(1) By statistically modeling the parameters of APUFs from

the design and manufacturing phases, we provide a framework
for understanding how different types of faults affect APUF
qualities, both analytically and numerically. The effect of the
statistically modeled faults on important APUF quality metrics
such as bias (percentage of responses that are positive) and
uniqueness (fraction of responses to the same challenges that
differ between two APUFs) lead to various insights for APUF
design constraints and rules.

(2) For each individual APUF instance, we focus on the
manifestation of the statistically modeled faults and propose a
simple and effective test, based on the response bias over some
“target sets” (special sets of challenges that highlight the impact
of a specific delay element), that is able to distinguish the stage,
type, and sign of (multiple) abnormal delay element(s).

II. APUF MODEL AND TARGET SETS

The architecture of the APUF is illustrated in Fig. 1, where
the input is a challenge vector c 2 {0, 1}n and the output is
a binary response R(c) 2 {±1} produced by a race resolution
arbiter which compares which of two racing signals – denoted
by red and blue – arrives first, after traversing through n stages
in series. In each stage i, among the four tracks / delay elements
ti, ui, ri and si, the two signals traverse via the “parallel” tracks
(ti, ui) if the challenge bit ci = 0, or the “crossed” tracks
(ri, si) if ci = 1. The response is +1 (�1) if the upper (lower)
entrance to the arbiter arrives first.

ar
bi

te
r

responsechallenge
=0 =1 =1=01 +1

R()

-1+1-110=0

+1

+1

Fig. 1: APUF with challenge bits selecting the parallel (ti, ui)
or cross (ri, si) tracks to form two racing paths. The response
is the sign of the accumulated delay difference �n(c).

Since the response relies only on which signal arrives first, it
depends on the relative delay difference between the two racing
paths. Hence, it depends on the delay difference at each stage
i, denoted as delta elements, �(0)i := ti�ui (selected if ci = 0)
and �(1)i := ri � si (selected if ci = 1), or �(ci)i for short.

The response R(c) then can be represented as the sign of
the accumulated delay difference at the final stage, �n(c), as

R(c) = sign(�n(c)) 2 {±1}, (1)

where �n(c) is computed recursively for i 2 [1, n], �0 = 0:

�i(c) =

(
+�i�1(c) + �(0)i , when ci = 0

��i�1(c) + �(1)i , when ci = 1
(2)

and �i(c) is the accumulated delay difference until stage i.
It is usually assumed for APUFs that all the delta elements

follow the same zero-mean Gaussian distribution: �(x)i ⇠
N (0, �2), 8i 2 [1, n], x 2 {0, 1}. We propose a statistical
model able to isolate the effects of the mask versus the PV,
with parameters of an individual APUF modeled as

(ti, ui, ri, si) = (t⇤i , u
⇤
i , r

⇤
i , s

⇤
i) + (✏ti , ✏ui , ✏ri , ✏si), i 2 [1, n].

The first term represents the design-phase mask parameters
(common to all APUFs), and the second the manufacturing-
phase PV parameters (unique to each APUF). Hence,

�(0)i = ti � ui = (t⇤i � u⇤
i) + (✏ti � ✏ui) (3)

=: µ(0)
i + ✏(0)i ⇠ N (µ(0)

i , �2
i,0) (4)

�(1)i = ri � si = (r⇤i � s⇤i) + (✏ri � ✏si) (5)

=: µ(1)
i + ✏(1)i ⇠ N (µ(1)

i , �2
i,1) (6)

where µ(0)
i and µ(1)

i are determined by the mask parameters
(t⇤i , u

⇤
i , r

⇤
i , s

⇤
i), fixed for all APUFs. The PV is captured by ✏(0)i

and ✏(1)i , modeled as independent Gaussian random variables.
Our main technical tool and innovation lies in the use of

“target sets”, or sets of challenges able to extract the influence
of a particular delta element on the response bias.

Definition 1 (target set): A target set C(x)
i,+ (or C(x)

i,�) with
x 2 {0, 1}, i 2 [1, n] contains all n-bit challenges preserving
(or reversing) the sign of �(x)i , which may be derived from (2):

C(x)
i,+ := {challenges with + �(x)i selected in �n}

= {c 2 {0, 1}n : ci = x, ci+1 + · · · + cn is even}
C(x)
i,� := {challenges with � �(x)i selected in �n}

= {c 2 {0, 1}n : ci = x, ci+1 + · · · + cn is odd}.

III. STATISTICAL FAULT MODELS AND THEIR IMPACTS

Intuitively, a good APUF production line is characterized by
symmetry, or equal delay for each track pair from the mask,
and uniform, unskewed PV for all of the stages of all APUFs:

Definition 2 (good APUF production): Requires t⇤i = u⇤
i ,

r⇤i = s⇤i and ✏ti , ✏ui , ✏ri , ✏si ⇠ N (0, �2/2), resulting in �(x)i ⇠
N (0, �2), 8i 2 [1, n], x 2 {0, 1}.
Faults in mask or PV may cause deviations from these assump-
tions in several ways, such as:

a) Mask faults during the design phase can break symmetry,
with t⇤j 6= u⇤

j or r⇤j 6= s⇤j . This could be caused by the
lack of strict constraints to the CAD tools, and it will
result in the �(x)j of all the APUFs having a non-zero
mean.

b) PV faults from the manufacturing phase can break the
assumption of (✏ti , ✏ui , ✏ri , ✏si) ⇠ N (0, �2/2), with two
possibilities:

1) Some ✏ could have non-zero mean, caused by
some asymmetric characteristics of the fabrication
process, unilaterally enlarging (or shrinking) some
values of delay elements.

2) Alternatively, some ✏ could have an uncommon
�, perhaps caused by spatial asymmetry during
fabrication across the delay elements.

Mask and PV faults can be respectively modeled as:
Definition 3 (µ-fault of APUF production): Some abnormal

�(y)j ⇠ N (µ, �2) where µ = K� 6= 0 for some scalar K, while
all other �(x)i ⇠ N (0, �2), 8i 6= j 2 [1, n] or x 6= y 2 {0, 1}.

Definition 4 (�-fault of APUF production): Some abnormal
�(y)j ⇠ N (0, ⇠2) where ⇠ = L� for some scalar L � 1, while
all other �(x)i ⇠ N (0, �2), 8i 6= j 2 [1, n] or x 6= y 2 {0, 1}.

A µ-fault or �-fault with large K or L will, with high
probability, result in one (or more) �(y)j having a very large
value. We observe the effect of such large �(y)j on APUF quality
metrics, and learn how to detect such abnormalities.

A. Bias and uniqueness metrics: definitions and analysis

We look at the impact of µ-faults and �-faults on the bias
and uniqueness, two (of many) PUF-quality metrics [11], [12].

1) Impact of µ-fault on bias and uniqueness:

We first consider a generic µ-fault model, in which

�(0)j ⇠ N (K0�, �2), �(1)j ⇠ N (K1�, �2). (7)

Bias represents whether a PUF generates responses ±1 with
equal percentage and is ideally 0.5.

Definition 5: The response bias of multiple PUFs over a set
of challenges C, denoted as Bm(C), is defined as the average
of a single PUF’s bias over C, Bs(C) (with Bs(;) = 0.5) as

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

250

500

750

1000

1250

K = �20

K = 0

K = 10

Fig. 2: Histograms of Bs(C) for good PUFs (K = 0) vs. bad
PUFs with last-stage µ-fault (K = �20, 10).

in (8), which can be empirically approximated as in (9) and
corresponds to the fraction of positive responses over C:

Bm(C) := EPUF [Bs(C)] = EPUF [Pc2C [�n(c) > 0]] (8)

⇡ 1

PUFs

X

PUFs

"
1

|C|
X

c2C
(R(c) = +1)

#
. (9)

For the generic µ-fault model, one can easily see that if the
fault is at stage j 6= n (the last stage), then a quarter of the
challenges pick each of the �(0)j with a positive sign, a quarter
negative, a quarter pick �(1)j with a negative and a quarter with
a positive sign, leading to the bias Bm(C) over C = {0, 1}n as

Bm(C) = EPUF[P (�n(c) > 0)] = 0.5, j 6= n. (10)

When j = n (last stage has an abnormally large mean), then

Bm(C) =
1

2

✓
Q

✓
�K0p

n

◆
+ Q

✓
�K1p

n

◆◆
, (11)

where Q(x) denotes the tail distribution function of the stan-
dard normal distribution, i.e. Q(x) := 1p

2⇡

R1
x e�u2/2du =

P (X > x), if X ⇠ N (0, 1). Note that while the set of all
challenges remains unbiased under different fault models (with
the exception of when the final delta is abnormal), if the target
set is specially selected, we will observe a bias of

Bm(C(x)
j,+) = P (�n(c) > 0|c 2 C(x)

j,+) = Q

✓
�Kxp

n

◆
, (12)

which will allow us to identify faults in �(x)j .
Uniqueness is measured by how much a pair of PUFs differ

in their responses using the “inter-PUF distance” metric (called
uniqueness here for short) from [12, Equation (3)], and is
ideally 0.5. It is formally defined as in (13) and may be
empirically approximated as in (14) if given M PUFs:

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

250

500

750

1000

1250

L = 1

L = 10

L = 100

Fig. 3: Histograms of Bs(C) for good PUFs (L = 1) vs. bad
PUFs of last-stage �-fault (L = 10, 100).

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

250

500

750

1000

1250
Good PUFs

µ�fault

��fault

Fig. 4: Histograms of HDs(C) for good PUFs vs. bad PUFs
with a single µ-fault (K = 20) or a single �-fault (L = 20).

Definition 6: The uniqueness, HDm(C) of multiple PUFs
over challenge set C is the expectation of the single pair
distance between two PUF instances, HDs(C) over C as:

HDm(C) := EPUF [HDs(C)] (13)

⇡

2

4 2

(M)(M � 1)

M�1X

i=1

MX

j=i+1

HD(Ri(C), Rj(C))

|C|

3

5 (14)

where Ri(c) is the response of PUF i, and HD(Ri(C), Rj(C))
is the Hamming distance between the response vectors of PUFs
i and j (M total PUFs), taken over the |C| challenges in set C.
For the generic µ-fault model, a little more work yields:

HDm(C) = PPUF,c2C(R1(c) 6= R2(c)) (15)

=


Q

✓
�K0p

n

◆
Q

✓
K0p

n

◆
+ Q

✓
�K1p

n

◆
Q

✓
K1p

n

◆�
. (16)

2) Impact of �-fault on bias and uniqueness:

Consider a generic �-fault model, in which

�(0)j ⇠ N (0, L0�
2), �(1)j ⇠ N (0, L1�

2). (17)

It is easy to see that the bias and uniqueness will be 0.5 since
P [�n(c) > 0] = 0.5 (probability over PUFs) for all challenges.

Note: The response bias and uniqueness are defined as
expected values over the distributions of the manufactured delay
differences and over challenges in a set C. For a fixed PUF
instance, the delay differences are fixed and so the per-PUF
bias and uniqueness are taken over challenges. Hence, we can
view a “distribution” of bias and uniqueness over different PUF
instances. Ideally these distributions are deterministic peaks at
0.5. However, in practice there are ranges of per-PUF bias and
uniqueness values: the larger the spread, the worse.

B. Simulation results: bias and uniqueness of faults
The data is presented using [13], obtained by applying 1000

random challenges as the set C over a large number (1000 to
5000) of 64-bit APUFs, all injected with the same configuration
of µ-faults (with scalar K) or �-faults (with scalar L).

1) Impact on response bias Bm(C): Interestingly, µ-faults
and �-faults do not affect Bm(C), unless they occur at the
last stage n of an APUF as shown in Figs. 2 and 3. Since
usually there are an equal number of challenges selecting a delta
element (exception: last stage) in either positive or negative
forms, even if a delta element is large, its impact on the percent

0

25

50

75

100

0 1 2 4 8 16 32 64 128
0%

25%

50%

75%

100%

(a) µ-fault count

0

25

50

75

100

0 1 2 4 8 16 32 64 128
0%

25%

50%

75%

100%

(b) �-fault count

Fig. 5: Impact of multiple faults on uniqueness: how the mean
(blue line, left y-axis) and variance (red bar, right y-axis) of
HDm(C) are affected by µ- and �-faults with K = L = 10.

of positive and negative responses will cancel out. However,
when the µ-fault or �-fault is in the last stage, bias is affected,
as seen in Figs. 2 and 3 and equation (11). This emphasizes
the importance of ensuring that last stage delta elements do
not deviate from the ideal symmetric assumptions.

2) Impact on uniqueness HDm(C): Fig. 4 shows a histogram
of the uniqueness HDs(C) of a single µ-fault or a single �-
fault, taken over the manufacturing randomness of the APUFs.
A single µ fault shifts the distribution of HDs(C) leftwards, and
a single � fault increases its variance (flattens it out) relative
to good APUFs. Both cases are bad for APUF uniqueness: the
distribution of HDs(C) should ideally be a single mass point
at 50%. Deviation from this, either by a decreased mean or
increased variance, results in some (large number of) APUF
pairs yielding similar responses.

Fig. 5 shows how increasing the number of faults affects
HDm(C)’s mean (the lower the worse) and variance (the higher
the worse) over APUFs. Here, as the number of faults increases
from 0 to 2n on the x-axis (in logarithmic scale), we observe
the impact of increasing number of µ vs. � faults on uniqueness.
The mean (blue lines) of HDm(C) is not affected by �-faults,
but it decreases significantly as the µ-fault count increases.
When all �s have µ-faults, (x = 2n) the mean is reduced to
⇡ 5% as a function of (K, n), as seen in Fig. 6 (M4). We can
explain this analytically, but omit details due to space.

The red bars indicate the variance of APUF uniqueness
(HDm(C)), which remains small as the µ-fault count increases
but is affected drastically even with a single �-fault occurrence.

3) Impact of µ-fault count and locations: To show the fault
count and location impacts, we consider the following models,
all of which are µ-faults with identical PV, and K, Ki, Kj 6= 0:

• M1: single µ-fault: �(x)i ⇠ N (K�, �2).
• M2: dual µ-faults at the same stage: �(0)i ⇠ N (K0�, �2)

and �(1)i ⇠ N (K1�, �2).
• M3: dual µ-faults at different stages: �(x)i ⇠ N (Ki�, �2),

and �(y)j ⇠ N (Kj�, �2).
• M4: maximum µ-faults: 8i 2 [1, n], �(x)i ⇠ N (K�, �2).
Fig. 6 shows simulation results for how µ-faults affect the

uniqueness HDm(C) of the 4 models for some random set C of
1000 challenges. We are able to derive these plots analytically
(omitted due to space constraints), and these theoretical results
match our Monte Carlo simulations over 1000 APUFs and
1000 challenges, where the |K| in all models is the same.
We notice that M2 and M4 are the “worst” as they relatively
quickly converge to a low value for the uniqueness (i.e. for

high |K|, most APUFs produce the same outputs to the same
challenges). M1 and M3 level out at about 25%, meaning that
about a quarter of the challenges produced will lead to different
responses, which may also be verified analytically.

Fault impact: The results here indicate the severeness of
µ-faults in decreasing the APUF uniqueness HDm(C). One
must aim for t⇤i = u⇤

i , r
⇤
i = s⇤i in the mask for all elements.

These figures also show the impact of �-faults in increasing
the variance of HDm(C): many produced APUFs will have a
HDm(C) that deviates from 50%, jeopardizing uniqueness. It
is thus important to maintain uniform PV across elements.

IV. TEST & DIAGNOSIS OF APUF INSTANCES

In this section, we present how to detect whether an indi-
vidual APUF instance has unusually large delta elements (thus
a “bad” APUF), and how to diagnose these “abnormal” delta
elements (location, type, and sign). Our method is based on
using the bias of target sets as the test statistic.

When presented with a single PUF instance, one cannot
differentiate whether a particular large |�(x)i | came from a µ- or
�-fault; all that matters is that it is large and hence will affect
the bias and uniqueness. This motivates us to define:

Definition 7 (�-fault of a bad APUF instance): A �(y)j is
abnormal if |�(y)j | � T , where T = K� is a constant. An
APUF is bad if it has at least one abnormal delta element.

The value of K here can be solved for by setting HDm(C) =
P ⇤ for the desired uniqueness. For example, for M1, this
becomes a quadratic to solve for Q(K/

p
n), and invert for

K. The manufacturer might approximately obtain � for PV, so
that T may be obtained once K is found.

To find abnormal delta elements, we isolate the effect of a
single delta element on �n, and hence on R(c), using the target
sets of Definition 1. As seen by equation (12), the response bias
over a target set (in contrast to the entire or random challenge
set) will deviate from 0.5 when a delta element is abnormal.

Fig. 7 illustrates this with histograms of �n of 10,000 ran-
dom challenges for 4 64-bit APUF instances: a good APUF, and
3 bad APUFs with an abnormal �(0)25 = 10, 25, 50, respectively,
and normal delta elements ⇠ N (0, 1). All histograms are
symmetric about 0, with response biases of mean Bs(C) = 0.5
for a random set C. The histograms of bad APUFs, with mean

U
ni
qu
en
es
s

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40

M1(theoretical) M2(theoretical) M3(theoretical) M4(theoretical)
M1(simulation) M2(simulation) M3(simulation) M4(simulation)

Fig. 6: Uniqueness HDm(C) (y-axis) deteriorates as |K| (x-
axis) increases (under the 4 models M1-M4, via theoretical
results from (14) and by Monte-Carlo simulations).

Fig. 7: �n histograms for good vs. bad APUF instances.

of 0.5, have three humps rather than one. The smaller humps
are formed from the target sets C(0)

25,±, selecting the abnormal
�(0)25 with positive and negative sign, respectively. Thus, the
response bias over a target set Bs(C(x)

i,±) will be biased, and
can be used to “identify” an abnormal �(x)i .

A. Difference scores for delta elements: D(x)
i

Based on using the response biases of target sets, Bs(C(x)
i,±),

to identify an abnormal �(x)i , we propose the following metric:
Definition 8 (difference score): For an APUF instance with

responses obtained from a random challenge set C, the differ-
ence score D(x)

i for each delta element �(x)i is defined as

D(x)
i := Bs(C(x)

i,+) � Bs(C(x)
i,�) 2 [�1, 1] (18)

A normal �(x)i tends to have D(x)
i ⇡ 0. When D(x)

i deviates
from 0 (|D(x)

i | > �), it can be used to indicate the correspond-
ing �(x)i is abnormal, with the same sign, as follows:
Approximately optimal test: If
8
><

>:

D(x)
i > �, decide abnormal �(x)i > T = K�

|D(x)
i | < �, decide normal |�(x)i |  T = K�

D(x)
i < ��, decide abnormal �(x)i < �T = �K�

.

For i = n, C(x)
n,� = ;, D(x)

n = Bs(C(x)
n,+) � 0.5. The proof for

using difference score as the test statistic is omitted.
Fig. 8 illustrates how these difference scores “identify” an

abnormal delta element: D(0)
25 ⇡ 1.0 spikes for the abnormal

�(0)25 . Naturally, there will be a trade-off in identifying abnor-
mal stages as abnormal and misdiagnosing normal stages as
abnormal, which will depend on the threshold � 2 [0, 1]. To
pick � to obtain a desired false positive rate 0 < pFP < 1
we must solve P (|D(x)

i | > �)  pFP for �. This can be done
numerically or by looking at the ROC curve (shown in Fig. 11)
for the given K. Note that K is either solved for as described
below Definition 7, or it may be estimated by using (12) to
obtain K ⇡ �

p
nQ�1(Bs(C(x)

i,+)).

B. Detection and diagnosis simulation results
We now present the results of the proposed testing method-

ology, outlined in Algorithm 1. The detection and diagnosis
results will refer to the typical metrics used in a confusion
matrix, including True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN). We mainly focus on

Algorithm 1: Testing a single APUF instance
Input: A random set of challenges C and responses

{Rc : c 2 C} from an APUF instance, � 2 [0, 1].
Output: abnormality decision for each �(x)i .

1 for i 1 to n do

// Form 4 sets of responses for C(x)
i,±

2 initialize pos0 = neg0 = pos1 = neg1 = ;
3 for c = (c1, c2, · · · , cn) 2 C do

4 case ci = 0, ci+1 + · · ·+ cn is even do

5 pos0 = pos0
S
{Rc}

6 case ci = 0, ci+1 + · · ·+ cn is odd do

7 neg0 = neg0
S
{Rc}

8 case ci = 1, ci+1 + · · ·+ cn is even do

9 pos1 = pos1
S
{Rc}

10 case ci = 1, ci+1 + · · ·+ cn is odd do

11 neg1 = neg1
S
{Rc}

12 end

// Compute Bs(C(x)
i,±) and D(x)

i at i.
13 Bpos0 ratio of +1 in pos0
14 Bneg0 ratio of +1 in neg0
15 Bpos1 ratio of +1 in pos1
16 Bneg1 ratio of +1 in neg1
17 D0 Bpos0�Bneg0
18 D1 Bpos1�Bneg1

/* Diagnose on �(0)i and �(1)i based on the
given threshold of �. */

19 if |D0| > � then

20 report �(0)i as abnormal with sign(D0)
21 if |D1| > � then

22 report �(1)i as abnormal with sign(D1)
23 end

the True Positive Rate (TPR), defined as TP / (TP + FN), and
the False Positive Rate (FPR), defined as FP / (FP + TN).
Ideally, TPR = 1 and FPR = 0.

1) Effectiveness for detection and diagnosis: The Monte-
Carlo simulation considers 1000 bad APUFs with one to eight
randomly selected �-faults with �(x)i = K� (|K| 2 [2.5, 20]),

�15
�10
�5

0
5

10
15

D
el

ta
V

al
u
e

�(0)
i �(1)

i

0%

25%

50%

75%

100%

R
es

p
on

se
B

ia
s

Bs(C
(0)
i,±) Bs(C

(1)
i,±)

10 20 30 40 50 60
�1.0

�0.5

0.0

0.5

1.0

D
i�

er
en

ce
S
co

re

D(0)
i

10 20 30 40 50 60

D(1)
i

Fig. 8: �-element values (top), corresponding response biases
(middle, Bs(C(x)

i,+) in blue and Bs(C(x)
i,�) in orange), and the

difference scores (bottom) of 1000 randomly chosen challenges
on a 64-bit APUF with an abnormal �(0)25 = 10.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
|K|

0%

25%

50%

75%

100%

D
et

ec
ti
on

T
P

R

1 �-fault

2 �-faults

4 �-faults

8 �-faults

Fig. 9: Detection rate of bad 64-bit APUFs increases with larger
|K|, and decreases with more �-faults.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
|K|

0%

25%

50%

75%

100%

D
ia

gn
os

is
T

P
R

1 �-fault

2 �-faults

4 �-faults

8 �-faults

Fig. 10: Diagnosis rate of abnormal �s in bad 64-bit APUFs
increases with larger |K|, and decreases with more �-faults.

and � = 0.51. For TPR, detection results are shown in Fig. 9,
and diagnosis results in Fig. 10. FPR results are in Table I.

TPR for bad APUF detection: As shown in Fig. 9, when
|K| � 10 our method delivers TPR > 97.5% for bad APUFs
with up to 4 abnormal delta elements. When |K|  5, bad
APUFs are naturally hard to detect, as they are not that different
from good APUFs (and their uniqueness from (16) is close to
ideal, at (1�Q(5/

p
64))Q(5/

p
64) ⇡ 0.459). Detection rate is

reduced to < 50% as the number of abnormal �s increases to 8.
The existence of more abnormal �s reduces the “significance”
of each delta in the difference score, and other large deltas
“cancel” the boosting effect of the targeted delta.

TPR for abnormal �(x)i diagnosis: Fig. 10 shows similar
trends in the diagnosis ability of the proposed method: abnor-
mal delta elements can be precisely identified when there are
roughly 4 or fewer of them having large magnitudes (|K| > 5).

FPR for detection and diagnosis: As shown in Table I,
FPR can be kept quite low with � � 0.5, for both detection
and diagnosis. This means very few good APUFs (or normal
delta elements) are mistaken for bad ones (or abnormal ones).

2) Trade-off between TPR and FPR: Both the value of K
(threshold abnormal delta elements) and the choice of � (test
threshold for D(x)

i) have a large impact on TPR and FPR. Fig.
11 shows the Receiver-Operating Characteristics (ROC) curves

1� = 0.5 works well for large K, but results could be improved for small
K values by choosing a different �, as will be described in the next subsection.

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7
detection FPR% 100 100 100 58.40 7.00 0.10 0
diagnosis FPR% 50.37 17.75 4.18 0.67 0.06 0 0

TABLE I: False positive results from 1000 good 64-bit APUFs.

Fig. 11: Trade-off between TPR and FPR via ROC plot of
diagnosis results, on 64-bit bad APUFs with a single �-fault.

indicating the trade-offs between FPR (x-axis) and TPR (y-
axis) for various K and � selections. Plots like this can be
used to choose � for a desired TPR or FPR. An ideal choice
should reside on the upper-left corner (FPR = 0, TPR = 1).

V. CONCLUSION

We have presented new statistical models for native APUF
faults and demonstrated the impact of these faults on two
metrics of importance to APUFs: bias and uniqueness. We then
presented a simple, effective testing methodology that detects
and diagnoses bad delta elements in individual APUF instances.

REFERENCES

[1] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclonable
functions and applications: A tutorial,” Proc. of the IEEE, vol. 102, no. 8,
pp. 1126–1141, 2014.

[2] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas, “Identifi-
cation and authentication of integrated circuits,” Concurrency - Practice
and Experience, vol. 16, pp. 1077–1098, 09 2004.

[3] W. Che, F. Saqib, and J. Plusquellic, “Puf-based authentication,” in IEEE
ICCAD, 2015, pp. 337–344.

[4] A. Chandrakasan, W. J. Bowhill, and F. Fox, Models of Process Variations
in Device and Interconnect, 2001, pp. 98–115.

[5] M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of
mos transistors,” IEEE JSSC, vol. 24, no. 5, pp. 1433–1439, 1989.

[6] M. M. Yu, D. M’Raı̈hi, R. Sowell, and S. Devadas, “Lightweight and
secure puf key storage using limits of machine learning,” in International
Workshop on CHES. Springer, 2011, pp. 358–373.

[7] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing techniques for
hardware security,” in IEEE ITC, 2008, pp. 1–10.

[8] S. U. Hussain, S. Yellapantula, M. Majzoobi, and F. Koushanfar, “Bist-
puf: Online, hardware-based evaluation of physically unclonable circuit
identifiers,” in IEEE ICCAD, 2014, pp. 162–169.

[9] D. Chatterjee, A. Hazra, and D. Mukhopadhyay, “Testability Anal-
ysis of PUFs Leveraging Correlation-Spectra in Boolean Functions,”
arXiv:1810.08821, 2018.

[10] J. Ye, Q. Guo, Y. Hu, and X. Li, “Deterministic and probabilistic
diagnostic challenge generation for arbiter physical unclonable function,”
IEEE TCAD, vol. 37, no. 12, pp. 3186–3197, 2018.

[11] D. Lim, “Extracting secret keys from integrated circuits,” Master’s thesis,
MIT, Cambridge, MA, May 2004.

[12] Y. Lao and K. K. Parhi, “Statistical analysis of mux-based physical
unclonable functions,” IEEE TCAD, vol. 33, no. 5, pp. 649–662, 2014.

[13] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

