
Interpreting Deep-Learned Error-Correcting Codes
N. Devroye1, N. Mohammadi1, A. Mulgund1, H. Naik1, R. Shekhar1, Gy. Turán1,2, Y. Wei1 and M. Žefran1

1University of Illinois at Chicago, Chicago, IL, USA
2MTA-SZTE Research Group on Artificial Intelligence, ELRN, Szeged, Hungary

{devroye, nmoham24, mulgund2, hnaik2, rshekh3, gyt, ywei30, mzefran}@uic.edu

Abstract—Deep learning has been used recently to learn error-

correcting encoders and decoders which may improve upon previ-

ously known codes in certain regimes. The encoders and decoders

are learned “black-boxes”, and interpreting their behavior is of

interest both for further applications and for incorporating this

work into coding theory. Understanding these codes provides

a compelling case study for Explainable Artificial Intelligence

(XAI): since coding theory is a well-developed and quantitative

field, the interpretability problems that arise differ from those

traditionally considered. We develop post-hoc interpretability

techniques to analyze the deep-learned, autoencoder-based en-

coders of TurboAE-binary codes, using influence heatmaps,

mixed integer linear programming (MILP), Fourier analysis, and

property testing. We compare the learned, interpretable encoders

combined with BCJR decoders to the original black-box code.

I. INTRODUCTION

Recently, a new path emerged in the development of error
correcting codes: “learn” the encoders and/or decoders of error
correcting codes using deep learning in an end-to-end fashion
[1]–[9]. The results are mixed: while some learned codes
significantly outperform known codes, generally on channels
for which error-correcting codes have not been studied at
length [7], in others [2], [10], the general purpose neural
networks-based code designs achieve bit error rates (BERs)
comparable to convolutional codes, below those of near-
optimal codes. While deep-learned codes are explicitly given
by specific neural networks, those can be considered black
boxes in the sense that it is not “understood” how/when they
perform well or whether/if they relate to known codes.

Deep learning has been enormously successful in improving
the prediction capabilities of machine learning (ML) algo-
rithms and extending their applicability to new domains. The
interpretability of learned models is a fundamental require-
ment, important in itself, but also for achieving other objec-
tives, such as trust. It has mostly been discussed for perception
tasks such as image understanding and societal applications
such as loan approval. There are other domains where it
is equally important but has a different nature. In scientific
applications, the lack of interpretability of predictions obtained
through deep learning hinders the incorporation of new find-
ings into current scientific knowledge [11]. Compared with
societal applications, scientists have more precisely defined

This work was supported by NSF under awards 1705058 and 1934915, and
the Ministry of Innovation and Technology NRDI Office within the framework
of the Artificial Intelligence National Laboratory program (MILAB), Hungary.
The authors are in alphabetic order.

notions of an interpretation. The question whether it can be
achieved in such contexts is also of interest for understanding
the nature of scientific research using ML [12].

Thus the study of interpretability of deep-learned error-
correcting codes is motivated by information theory and XAI.
We present initial approaches for one of the simplest exam-
ples of end-to-end learned codes, termed Turbo Autoencoder
(TurboAE and TurboAE-binary, focusing on the latter) [9],
which are learned using convolutional neural networks (CNN).
These are among the first end-to-end learned channel codes
with reliability comparable to modern codes such as Turbo
codes on Additive White Gaussian Noise (AWGN) channels
for moderate block lengths (a few hundred) and signal to noise
ratios (SNRs) below around 1dB (low SNR) [9, Figure 1].

We focus on post-hoc interpretability, i.e., on interpreting
the output of the learned model. By interpretability we mean
comprehensibility for the information and communication the-
ory research community, which is consistent with the context-
dependence of the notion. Thus Turbo codes and the BCJR
decoder are considered interpretable. The iterative Turbo de-
coder is complex [13] and may be interpreted itself [14],
[15], but arguably its opacity is of a different degree than
that of a neural network. Even though in this work network
structure and size allow brute-force examination, our objective
is to develop techniques that may be applicable in general,
such as influence heatmaps, mixed integer linear programming
(MILP), Fourier analysis, and property testing.

Outline. In Section II we describe the encoder, and define
modified Turbo codes used in the interpretation of TurboAE1.
Sections III, IV and V discuss approximate and exact poly-
nomial representations of the encoding functions and BER
performance, coupled with BCJR decoders. Observations on
the training dynamics are given in Section VI. Section VII
summarizes and formulates open problems. Details may be
found in the Appendix of [18]2.

II. TURBOAE-BINARY AND MODIFIED TURBO CODES

The TurboAE encoder architecture [9] resembles a classical
rate 1/3 Turbo code, where the three constituent codes –
generally recursive convolutional codes for classical Turbo
codes [19], [20] – are replaced by CNN blocks, as in Fig.

1In particular the TurboAE and TurboAE-binary models at [16], [17]
respectively. Note that these models do not reproduce [9, Fig.1] exactly as
they are missing additional fine-tuning we were unable to reproduce.

2Code for experiments at https://github.com/tripods-xai/isit-2022.

<latexit sha1_base64="PnYoCHduSr2h7O4tfPDSnAUlkMo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fipk/WDkKSzQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLcGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/Hcy5AqZEVNLKFPc3krYmCrKjE2oZEPwVl9eJ+2rqlev1h5qlcZtHkcRzuAcLsGDa2jAPTShBQwm8Ayv8OYkzovz7nwsWwtOPnMKf+B8/gAtaY96</latexit>u
<latexit sha1_base64="/KXDt05vbrzY+1rkTETGbW+vEAM=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeqCB4r2A9oQtlsN+3SzSbsbsQS8je8eFDEq3/Gm//GTZuDtj4YeLw3w8w8P+ZMadv+tkorq2vrG+XNytb2zu5edf+go6JEEtomEY9kz8eKciZoWzPNaS+WFIc+p11/cpP73UcqFYvEg57G1AvxSLCAEayN5KauH6CnQXp1m2WDas2u2zOgZeIUpAYFWoPqlzuMSBJSoQnHSvUdO9ZeiqVmhNOs4iaKxphM8Ij2DRU4pMpLZzdn6MQoQxRE0pTQaKb+nkhxqNQ09E1niPVYLXq5+J/XT3Rw6aVMxImmgswXBQlHOkJ5AGjIJCWaTw3BRDJzKyJjLDHRJqaKCcFZfHmZdM7qznm9cd+oNa+LOMpwBMdwCg5cQBPuoAVtIBDDM7zCm5VYL9a79TFvLVnFzCH8gfX5A86BkYw=</latexit>xAE

<latexit sha1_base64="7N7LJg8REdj+M65Npr5gCyLLnXU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//ci1EbF6wEnC/YgOlQgFo2ildtYLQvI07ZcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwzO8wpuTOC/Ou/OxaC04+cwx/IHz+QMx+I99</latexit>x

<latexit sha1_base64="HamLw9MtuVAVXaswHPRqCR0A9UE=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzEOSJcxOZpMh81hmZsWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bK6ysrq1vFDdLW9s7u3vl/YOmUakmtEEUV7odYUM5k7RhmeW0nWiKRcRpKxrdTP3WI9WGKXlvxwkNBR5IFjOCrZMesm4Uo6deMOmVK37VnwEtkyAnFchR75W/un1FUkGlJRwb0wn8xIYZ1pYRTielbmpogskID2jHUYkFNWE2O3iCTpzSR7HSrqRFM/X3RIaFMWMRuU6B7dAselPxP6+T2vgqzJhMUkslmS+KU46sQtPvUZ9pSiwfO4KJZu5WRIZYY2JdRiUXQrD48jJpnlWDi+r53Xmldp3HUYQjOIZTCOASanALdWgAAQHP8ApvnvZevHfvY95a8PKZQ/gD7/MHW4aQIQ==</latexit>x1

<latexit sha1_base64="Bj67J5tu1KDrDK5wHNRYROci+sE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT0WvXisYD+kXUo2zbahSXZJsmJZ+iu8eFDEqz/Hm//GdLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcjP3O49UaRbJezONqS/wSLKQEWys9JD2gxA9DWqzQbniVt0MaJV4OalAjuag/NUfRiQRVBrCsdY9z42Nn2JlGOF0VuonmsaYTPCI9iyVWFDtp9nBM3RmlSEKI2VLGpSpvydSLLSeisB2CmzGetmbi/95vcSEV37KZJwYKsliUZhwZCI0/x4NmaLE8KklmChmb0VkjBUmxmZUsiF4yy+vknat6l1U63f1SuM6j6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzseiteDkM8fwB87nD10LkCI=</latexit>x2

<latexit sha1_base64="EK1hkKg0JVlu06UGl+vOfR/Kh4g=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9nVoh6LXjxWsB/SLiWbZtvQJLskWbEs+yu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvpn67UeqNIvkvZnE1Bd4KFnICDZWekh7QYie+udZv1xxq+4MaJl4OalAjka//NUbRCQRVBrCsdZdz42Nn2JlGOE0K/USTWNMxnhIu5ZKLKj209nBGTqxygCFkbIlDZqpvydSLLSeiMB2CmxGetGbiv953cSEV37KZJwYKsl8UZhwZCI0/R4NmKLE8IklmChmb0VkhBUmxmZUsiF4iy8vk9ZZ1buo1u5qlfp1HkcRjuAYTsGDS6jDLTSgCQQEPMMrvDnKeXHenY95a8HJZw7hD5zPH16QkCM=</latexit>x3

<latexit sha1_base64="JXGkx+NGafyorcn3FOKPkTRCaiQ=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBg5RESvVYFcFjBfsBbSyb7aZdutmE3Y1aQv6HFw+KePW/ePPfuG1z0NYHA4/3ZpiZ50WcKW3b31ZuaXlldS2/XtjY3NreKe7uNVUYS0IbJOShbHtYUc4EbWimOW1HkuLA47Tlja4mfuuBSsVCcafHEXUDPBDMZwRrI90nXc9HT73k4vrESdNesWSX7SnQInEyUoIM9V7xq9sPSRxQoQnHSnUcO9JugqVmhNO00I0VjTAZ4QHtGCpwQJWbTK9O0ZFR+sgPpSmh0VT9PZHgQKlx4JnOAOuhmvcm4n9eJ9b+uZswEcWaCjJb5Mcc6RBNIkB9JinRfGwIJpKZWxEZYomJNkEVTAjO/MuLpHladqrlym2lVLvM4sjDARzCMThwBjW4gTo0gICEZ3iFN+vRerHerY9Za87KZvbhD6zPH62Okf0=</latexit>xAE,1

<latexit sha1_base64="3rZTYsyu+9SgdJzsb8p/SOS0BYA=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPVYFcFjBfsBbSyb7aZdutmE3Y1aQv6HFw+KePW/ePPfuG1z0NYHA4/3ZpiZ50WcKW3b31ZuaXlldS2/XtjY3NreKe7uNVUYS0IbJOShbHtYUc4EbWimOW1HkuLA47Tlja4mfuuBSsVCcafHEXUDPBDMZwRrI90nXc9HT73k4vqkkqa9Ysku21OgReJkpAQZ6r3iV7cfkjigQhOOleo4dqTdBEvNCKdpoRsrGmEywgPaMVTggCo3mV6doiOj9JEfSlNCo6n6eyLBgVLjwDOdAdZDNe9NxP+8Tqz9czdhIoo1FWS2yI850iGaRID6TFKi+dgQTCQztyIyxBITbYIqmBCc+ZcXSbNSdk7L1dtqqXaZxZGHAziEY3DgDGpwA3VoAAEJz/AKb9aj9WK9Wx+z1pyVzezDH1ifP68Ukf4=</latexit>xAE,2

<latexit sha1_base64="z2VhO8qecvw4YTwY7P/YP8+dFrQ=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBg5REi3qsiuCxgv2ANpbNdtMu3WzC7kYtIf/DiwdFvPpfvPlv3LY5aOuDgcd7M8zM8yLOlLbtbyu3sLi0vJJfLaytb2xuFbd3GiqMJaF1EvJQtjysKGeC1jXTnLYiSXHgcdr0hldjv/lApWKhuNOjiLoB7gvmM4K1ke6Tjuejp25ycX10kqbdYsku2xOgeeJkpAQZat3iV6cXkjigQhOOlWo7dqTdBEvNCKdpoRMrGmEyxH3aNlTggCo3mVydogOj9JAfSlNCo4n6eyLBgVKjwDOdAdYDNeuNxf+8dqz9czdhIoo1FWS6yI850iEaR4B6TFKi+cgQTCQztyIywBITbYIqmBCc2ZfnSeO47JyWK7eVUvUyiyMPe7APh+DAGVThBmpQBwISnuEV3qxH68V6tz6mrTkrm9mFP7A+fwCwmpH/</latexit>xAE,3

<latexit sha1_base64="YxGfHyChJak4ZkGhqc2jDgT/fHU=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkoiRT0WvXisYD+gjWWz3bRLN5u4uymUkN/hxYMiXv0x3vw3btMctPXBwOO9GWbmeRFnStv2t1VYW9/Y3Cpul3Z29/YPyodHbRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k9u535lSqVgoHvQsom6AR4L5jGBtJDfpez4aPSZV5zxNB+WKXbMzoFXi5KQCOZqD8ld/GJI4oEITjpXqOXak3QRLzQinaakfKxphMsEj2jNU4IAqN8mOTtGZUYbID6UpoVGm/p5IcKDULPBMZ4D1WC17c/E/rxdr/9pNmIhiTQVZLPJjjnSI5gmgIZOUaD4zBBPJzK2IjLHERJucSiYEZ/nlVdK+qDmXtfp9vdK4yeMowgmcQhUcuIIG3EETWkDgCZ7hFd6sqfVivVsfi9aClc8cwx9Ynz/U75GA</latexit>

g(1)

<latexit sha1_base64="rSGdmyKOivSVyfM8NnI49yLTH7s=">AAAB9HicbVBNT8JAEJ3iF+IX6tHLRmKCF9ISoh6JXjxiIh8JVLJdtrBhuy27WxLS9Hd48aAxXv0x3vw3LtCDgi+Z5OW9mczM8yLOlLbtbyu3sbm1vZPfLeztHxweFY9PWiqMJaFNEvJQdjysKGeCNjXTnHYiSXHgcdr2xndzvz2lUrFQPOpZRN0ADwXzGcHaSG7S83w0fErK1cs07RdLdsVeAK0TJyMlyNDoF796g5DEARWacKxU17Ej7SZYakY4TQu9WNEIkzEe0q6hAgdUucni6BRdGGWA/FCaEhot1N8TCQ6UmgWe6QywHqlVby7+53Vj7d+4CRNRrKkgy0V+zJEO0TwBNGCSEs1nhmAimbkVkRGWmGiTU8GE4Ky+vE5a1YpzVak91Er12yyOPJzBOZTBgWuowz00oAkEJvAMr/BmTa0X6936WLbmrGzmFP7A+vwB1naRgQ==</latexit>

g(2)

<latexit sha1_base64="u5bC3T5x9zPX/7N9PHJUFiD7LAs=">AAAB9HicbVBNT8JAEJ3iF+IX6tHLRmKCF9IKUY9ELx4xkY8EKtkuW9iw3dbdLQlp+ju8eNAYr/4Yb/4bF+hBwZdM8vLeTGbmeRFnStv2t5VbW9/Y3MpvF3Z29/YPiodHLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG1749uZ355QqVgoHvQ0om6Ah4L5jGBtJDfpeT4aPibl6nma9oslu2LPgVaJk5ESZGj0i1+9QUjigApNOFaq69iRdhMsNSOcpoVerGiEyRgPaddQgQOq3GR+dIrOjDJAfihNCY3m6u+JBAdKTQPPdAZYj9SyNxP/87qx9q/dhIko1lSQxSI/5kiHaJYAGjBJieZTQzCRzNyKyAhLTLTJqWBCcJZfXiWti4pzWand10r1myyOPJzAKZTBgSuowx00oAkEnuAZXuHNmlgv1rv1sWjNWdnMMfyB9fkD1/2Rgg==</latexit>

g(3)

<latexit sha1_base64="Yv3vhztvCyWwLoZO8RPy4NuW4ZI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRahgpREinosevFYwX5AE8Jmu2mXbrJhdyKEUP+KFw+KePWHePPfuG1z0NYHA4/3ZpiZFyScKbDtb6O0tr6xuVXeruzs7u0fmIdHXSVSSWiHCC5kP8CKchbTDjDgtJ9IiqOA014wuZ35vUcqFRPxA2QJ9SI8ilnICAYt+WY19HPn3IUxBTytu2Qo4Mw3a3bDnsNaJU5BaqhA2ze/3KEgaURjIBwrNXDsBLwcS2CE02nFTRVNMJngER1oGuOIKi+fHz+1TrUytEIhdcVgzdXfEzmOlMqiQHdGGMZq2ZuJ/3mDFMJrL2dxkgKNyWJRmHILhDVLwhoySQnwTBNMJNO3WmSMJSag86roEJzll1dJ96LhXDaa981a66aIo4yO0QmqIwddoRa6Q23UQQRl6Bm9ojfjyXgx3o2PRWvJKGaq6A+Mzx/zxpRV</latexit>

f1,✓(·)

<latexit sha1_base64="XhjW0RtEORO7v2izd1N6mU0LuH8=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBEqSElKUZdFNy4r2Ac0IUymk3bo5MHMjRBC/RU3LhRx64e482+ctllo64ELh3Pu5d57/ERwBZb1baytb2xubZd2yrt7+weH5tFxV8WppKxDYxHLvk8UEzxiHeAgWD+RjIS+YD1/cjvze49MKh5HD5AlzA3JKOIBpwS05JmVwMsbFw6MGZBpzaHDGM49s2rVrTnwKrELUkUF2p755QxjmoYsAiqIUgPbSsDNiQROBZuWnVSxhNAJGbGBphEJmXLz+fFTfKaVIQ5iqSsCPFd/T+QkVCoLfd0ZEhirZW8m/ucNUgiu3ZxHSQosootFQSowxHiWBB5yySiITBNCJde3YjomklDQeZV1CPbyy6uk26jbl/XmfbPauiniKKETdIpqyEZXqIXuUBt1EEUZekav6M14Ml6Md+Nj0bpmFDMV9AfG5w/1WZRW</latexit>

f2,✓(·)

<latexit sha1_base64="bStrKPsYOD03bO4X4xgKTU1qmcA=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAgVpCRa1GXRjcsK9gFNCJPJpB06yYSZGyGE+ituXCji1g9x5984fSy09cCFwzn3cu89QcqZAtv+NlZW19Y3Nktb5e2d3b198+Cwo0QmCW0TwYXsBVhRzhLaBgac9lJJcRxw2g1GtxO/+0ilYiJ5gDylXowHCYsYwaAl36xEfnFx5sKQAh7XXBIKOPXNql23p7CWiTMnVTRHyze/3FCQLKYJEI6V6jt2Cl6BJTDC6bjsZoqmmIzwgPY1TXBMlVdMjx9bJ1oJrUhIXQlYU/X3RIFjpfI40J0xhqFa9Cbif14/g+jaK1iSZkATMlsUZdwCYU2SsEImKQGea4KJZPpWiwyxxAR0XmUdgrP48jLpnNedy3rjvlFt3szjKKEjdIxqyEFXqInuUAu1EUE5ekav6M14Ml6Md+Nj1rpizGcq6A+Mzx/27JRX</latexit>

f3,✓(·)
<latexit sha1_base64="SszqgylynoqdSluBuqAHHUtxGgs=">AAACA3icbVC7SgNBFJ2N7/iK2mkzGAQLCbsSVLQRbLSLYBIhu4TZyV0dMju7zNwVwxKw8VdsLBSx9Sfs/Bsnj0KNBwYO55zLnXvCVAqDrvvlFKamZ2bn5heKi0vLK6ultfWGSTLNoc4TmejrkBmQQkEdBUq4TjWwOJTQDLtnA795B9qIRF1hL4UgZjdKRIIztFK7tOkj3GN+oRC0BGaje33qn1C/Jtqlsltxh6CTxBuTMhmj1i59+p2EZzEo5JIZ0/LcFIOcaRRcQr/oZwZSxrvsBlqWKhaDCfLhDX26Y5UOjRJtn0I6VH9O5Cw2pheHNhkzvDV/vYH4n9fKMDoKcqHSDEHx0aIokxQTOiiEdoQGjrJnCeNa2L9Sfss047YRU7QleH9PniSN/Yp3UKleVsunx+M65skW2Sa7xCOH5JSckxqpE04eyBN5Ia/Oo/PsvDnvo2jBGc9skF9wPr4Be+iXYg==</latexit>

Interleaver, �

<latexit sha1_base64="PnYoCHduSr2h7O4tfPDSnAUlkMo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fipk/WDkKSzQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLcGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/Hcy5AqZEVNLKFPc3krYmCrKjE2oZEPwVl9eJ+2rqlev1h5qlcZtHkcRzuAcLsGDa2jAPTShBQwm8Ayv8OYkzovz7nwsWwtOPnMKf+B8/gAtaY96</latexit>u
<latexit sha1_base64="SszqgylynoqdSluBuqAHHUtxGgs=">AAACA3icbVC7SgNBFJ2N7/iK2mkzGAQLCbsSVLQRbLSLYBIhu4TZyV0dMju7zNwVwxKw8VdsLBSx9Sfs/Bsnj0KNBwYO55zLnXvCVAqDrvvlFKamZ2bn5heKi0vLK6ultfWGSTLNoc4TmejrkBmQQkEdBUq4TjWwOJTQDLtnA795B9qIRF1hL4UgZjdKRIIztFK7tOkj3GN+oRC0BGaje33qn1C/Jtqlsltxh6CTxBuTMhmj1i59+p2EZzEo5JIZ0/LcFIOcaRRcQr/oZwZSxrvsBlqWKhaDCfLhDX26Y5UOjRJtn0I6VH9O5Cw2pheHNhkzvDV/vYH4n9fKMDoKcqHSDEHx0aIokxQTOiiEdoQGjrJnCeNa2L9Sfss047YRU7QleH9PniSN/Yp3UKleVsunx+M65skW2Sa7xCOH5JSckxqpE04eyBN5Ia/Oo/PsvDnvo2jBGc9skF9wPr4Be+iXYg==</latexit>

Interleaver, �

}

}

TurboAE
(Binary)

Interpretable
code

Encoder structures of

Fig. 1: The rate R = 1
3 (u 2 {0, 1}100,xAE,j 2 {±1}100)

TurboAE-binary encoder structure. Functions fj,✓(·) are the con-
stituent codes implemented as CNNs. Our interpretable codes either
find compact Boolean representations for the learned function fj,✓ or
approximate it with a modified convolutional code g(j).

1. The input to the network is a sequence u of 100 bits, and
the output of each block j 2 {1, 2, 3} is a sequence xAE,j of
equal length of either real numbers (for Turbo-AE) or {±1}
(for binarized version Turbo-AE-binary). The focus of this
paper is TurboAE-binary [9, Section 3.2], a modification of the
TurboAE architecture where the functions fj,✓ are binarized
using a sign function and Straight-Through-Estimator [21],
[22]. Therefore, in the rest of the paper, and in Fig. 1 we
assume that encoding functions fj,✓ : {0, 1}100 ! {±1}, and
we drop the “binary” suffix. Note that TurboAE also has power
control modules and zero-padding – we refer the readers to
[9] for the details omitted to keep things simple.

A closer look at the CNN blocks reveals that the constituent
codes of block j implements a real-valued Boolean function
fj,✓ : {0, 1}9 ! R (Turbo-AE) or Boolean function fj,✓ :
{0, 1}9 ! ±1 (Turbo-AE-binary) of memory 9 applied to bits
` � 4 : ` + 4 of u to produce the bit ` of xAE,j . The encoder
CNN is paired with a decoder CNN function �✓ (omitted as
we focus on interpreting the encoder only) and the network is
trained in an end-to-end fashion to obtain network parameters
✓. Details are found in the Appendix of [18].

A. Modified Turbo codes

To develop the interpretation of TurboAE-binary we need
to consider modified Turbo codes. Here, the constituent codes
are modified convolutional codes: nonsystematic, nonrecursive,
involve affine functions instead of linear ones (as a Boolean
function and its complement are equivalent for the neural
network so it may converge to either), and may also include
a delay (shift), i.e., an output bit may depend on future input
bits (up to a lookahead horizon L). Thus, x`, the `th bit of
the modified convolutional encoding output, equals:

x` =
MM

i=1

gi u`+L�i+1 � gM+1, (1)

where � is binary mod 2 addition, gi 2 {0, 1}, i 2 1 : (M +1)
are the code parameters, and M is the memory length.

III. APPROXIMATE TURBO ENCODING

We now explore several alternatives for how to find the best
affine approximations of the constituent encoders. Schemati-
cally, the approximation problem is depicted in Fig. 1.

A. Mixed integer linear programming (MILP)

The first approach is to treat the encoder entirely as a black
box, with no assumption on its architecture, and formulate the
approximation as a MILP problem. In particular, we do not
assume that each encoding block consists of sequentially ap-
plying the same function to a sliding window of the input bits
as in a convolutional code. Instead, each learned encoder block
is considered as a general function f block

j,✓
: {0, 1}k ! ±1k.

We look for the best approximation to this arbitrary black box
that is of the form of a modified convolutional code. This is a
reasonable first approximation given that TurboAE is meant
to “mimic” Turbo codes (for which constituent codes are
convolutional codes), and since convolutional codes are such
a well-studied class of codes with relatively few parameters.

Let �conv be the set of all modified convolutional codes.
The code g(j)

conv 2 �conv closest to the TurboAE encoder block
f block

j,✓
minimizes the expected Hamming distance between the

corresponding encoder outputs (codewords) produced by the
two codes. Given gconv 2 �conv, let xgconv(u) and xAE,j(u) be
the output strings obtained by encoding the input string u with
gconv (applied repeatedly as in a standard convolutional code)
and f block

j,✓
, respectively. Then:

g(j)
conv = arg min

gconv2�conv

Eu2{0,1}k [dH(xgconv(u),xAE,j(u))] (2)

where dH(a,b) = 1
k

P
k

`=1 a` � b` is the Hamming distance.
We can parameterize each modified convolutional code g(j)

conv
by a binary vector g(j) of length M + 1 according to Eq. (1).

A MILP can be obtained from (2) using a reformulation of
binary arithmetic (see, e.g., [23]); linearity follows from the
linearity of (1) in parameters gi (and could be extended to
non-linear functions in input u) and is readily solved using
available solvers; we use the Gurobi solver [24]. While it may
not be true in general, in our case Gurobi’s solution is optimal
as confirmed by brute-force search. The expected value in
(2) is approximated through random sampling. For sufficiently
large shift L and memory length M , the optimal generators
are g(1) = 111111, g(2) = 101110, and g(3) = 111101,
where the last bit is the parity bit. These produce encoded
bits which differ from those of TurboAE-binary for about 10%,
2% and 25% on average respectively, including edge effects.
Multiple solutions for block 3 exist and are related to the
Fourier coefficients (see Section VI, Appendix of [18]).

B. Influence and Fourier representation

In this section we consider another approach that takes
some information available about the network – that it is a
CNN – into account. We use the notion of the influence of a

Fig. 2: TurboAE Constituent Code Influence heatmaps of (a) Block
1, (b) Block 3 without the interleaver.

variable [25], which is a natural importance measure in our
context (other measures used in XAI are described in [26]).

The influence of the input variable xi for a single-output
Boolean function f : {0, 1}k ! {0, 1} is defined as

Inf
i

(f) =
1

2k

X

x2{0,1}k

|f(x) � f(x(i))| = Pr(f(x) 6= f(x(i)),

(3)
where x(i) is x with the ith coordinate flipped. The influence of
a variable is 0 iff the function does not depend on that variable.
For an affine function a �

L
i2I

xi, with I ✓ {1, . . . , n} the
influence of variable xi is 1 if i 2 I and 0 otherwise. For
an (n, k) code viewed as a multi-output Boolean function f :
{0, 1}k ! {0, 1}n (or {±1}n) the matrix of influences Infi(f)
can be visualized as a heatmap.

The heatmap for a nonrecursive convolutional code shows
a staircase pattern (which gets shuffled if interleaving is
applied). Influence can be computed exhaustively, or estimated
by random sampling. Influences for the encoder functions f1,✓

and f3,✓ for TurboAE are shown in Fig. 2; f2,✓’s heatmap
is that of a parity. For `th output, inputs only in window
` � 2 : ` + 2 have non-zero influences (for each block). The
architecture would allow for a non-zero influence window of
length 9, so it is interesting that only a length 5 emerged from
training. Consistent with the structure of a CNN, the influence
pattern is the same for outputs 3 : 98 of each block.

The CNN architecture also implies that the output bits
in a block compute the same function of their input bits.
This function can be studied, in particular for finding a best
affine approximation, using Fourier analysis. Switching to the
domain {1, �1}, Boolean functions have a unique Fourier

representation as a multilinear polynomial

f(x) =
X

S✓[n]

f̂(S)�S ,

where �S =
Q

i2S
xi [25]. The Fourier coefficients are

f̂(S) = hf, �Si, for inner product hf, gi = Ex(f(x)g(x)). Let
d(f, g) = Pr(f(x) 6= g(x)) be the distance of f and g. Then
hf, �Si = 1�2d(f, �S), and so the best parity approximation
of f corresponds to the largest Fourier coefficient.

The Fourier coefficients of the three functions computed by
the three blocks of TurboAE-binary are shown in Figure 4(c)

and are consistent with those obtained in the previous section.
The multiple optimal approximations (4 large Fourier coeffi-
cients) in block 3 are also visible. The computation is done
by brute force based on the influence information providing
the number of relevant variables, or memory size.

The Goldreich-Levin algorithm [27] is a randomized learn-
ing algorithm which computes large Fourier coefficients with
high probability in polynomial time. It requires query access
to the function, which is available in our setup. This algorithm
could be used without any information about memory size.

C. Property testing

We now consider another approach to study affine approxi-
mations. An affine function is either linear or its complement
is, so we can restrict to linearity. In the framework of prop-

erty testing [28], one must decide if an unknown black-box
function has a property. The black box is queried by an input,
and the function value at that input is returned. A notion of
distance of a function from the property is assumed. For a
given ✏, the function is accepted with probability 1 if it has
the property, and is rejected with probability at least 2/3 if its
distance from the property is at least ✏. A testing algorithm
is tolerant [29] if for some ✏0 < ✏ functions having distance
at most ✏0 from the property are accepted with probability at
least 2/3 as well.

We consider property testing for multi-output Boolean func-
tions f = (f1, . . . , fn) : {0, 1}n ! {0, 1}m. The distance of
two such functions f, g is d(f, g) = Pri,x(fi(x) 6= gi(x)).
The distance of f from a property is the minimum of d(f, g)
over functions g having the property.

A multi-parity function is of the form g = (h, . . . , h) :
{0, 1}n ! {0, 1}n, where h is a parity function. For x =
(x1, . . . , xn) let s(x) = (x2, . . . , xn, x1) be the cyclic shift of
x. A cyclically shifted multi-parity (CSMP) function is of the
form f(x) = (h(x), h(s(x)), . . . , h(s(n�1)(x)) : {0, 1}n !
{0, 1}n, where h is a parity. A CSMP function is similar to a
convolutional code with the exception of the wraparound.

Theorem 1. There is a tolerant testing algorithm (with ✏0 =
✏/18) for CSMP using O(1/✏) queries.

The proof is given in the Appendix of [18]. Testing a single
output Boolean function f for being a parity function is based
on testing f(x) � f(y) = f(x � y) for randomly chosen x
and y, and repeating this test O(1/✏) times [30]. In the multi-
input case one can select random vectors x, y and random

indices i, j, k, and test fi(x)�fj(y) = fk(x�y). The analysis
uses the Fourier approach of [31] for linearity testing. Note
that property testing is very efficient but it does not provide
the approximating parity function (that requires further testing
using the self-correction property). It can be viewed as a
preliminary test, which is suitable for our context.

IV. NONLINEAR TURBO ENCODING

We now look not at approximating the constituent encoders,
but at describing them exactly. The truth tables of the 5-
variable (5 obtained from influence) encoding functions can

be determined exactly by brute force as well and, in order
to understand the nonlinearity of the functions, one can turn
these functions into their unique representation as a multilinear
polynomial over F2.

We consider an extended F2-polynomial representation,
which we refer to as a unate multilinear polynomial. In unate
form, variables can also have negative polarity, i.e., have all
their occurrences negated. A polynomial obtained from an-
other polynomial by replacing all occurences of a subset of the
variables by their negations, and/or by negating the function, is
a unate variant. For example, x1�x̄2�x1x̄2 is a unate variant
of x1 � x2 � x1x2. The use of unate polynomials allows for
more compact representation, appealing for interpretability.

The simplest unate polynomials for the encoding functions
of TurboAE-binary are in Table I. These are moderately non-
linear syntactically, having 3 nonlinear terms altogether. The
function in block 1 is also moderately nonlinear semantically
(differs from parity at only 3 points), but the function in block
3 is semantically further from linear (differs at 8 points).

It turns out that there is a more direct way to obtain these
polynomials. Going beyond the nonzero pattern of influences
in the heatmap, now we make use of their values as well.
The nonzero influence values in each row for block 1 are
(15
16 , 13

16 , 13
16 , 13

16 , 15
16), for block 2 they are (1, 1, 1, 0, 1), and

for block 3 they are (1
2 , 1, 1

2 , 1, 1). These particular influence
values determine unique functions up to unate variants. This is
a very special case of the inverse influence problem and such
a result cannot be expected in general, but it suggests that it
may be of interest to study conclusions that can be drawn from
influences. Influences are also called the Banzhaf index, and
related questions have been studied in [32].

Theorem 2. a) (Block 1) Let f : {0, 1}5 ! {0, 1} have

variable influences
15
16 , 13

16 , 13
16 , 13

16 , 15
16 . Then

f(u) = u1 � u2 � u3 � u4 � u5 � (1 � u1u5)u2u3u4

or a unate variant.

b) (Block 2) Let f : {0, 1}5 ! {0, 1} have variable

influences 1, 0, 1, 1, 1, then f(u) = u1 � u3 � u4 � u5, or

a unate variant.

c) (Block 3) Let f : {0, 1}5 ! {0, 1} have variable

influences 1, 1, 1
2 , 1, 1

2 , then f(u) = u1 � u2 � u4 � u3u5,

or a unate variant.

The proof is in the Appendix of [18]. The proof of part a)

uses the edge isoperimetric inequality for the hypercube [33].
As Theorem 2 and Table I show, TurboAE-binary’s constituent
codes are nonsystematic and nonrecursive. Blocks 1 and 3 and
nonlinear, while block 2 is affine.

V. DECODING

So far we have considered interpreting the encoder, leaving
the decoder untouched. We investigate how the modified
Turbo code found using MILP and the exact nonlinear Turbo
code perform when coupled with an iterative BCJR decoder.
Iterative BCJR attempts to calculate the posterior probabilities
P(ui = 1|y) for received message y [34] [35], whereas the

Block # Expression for output #j

1 1 � u1 � ū2 � u3 � ū4 � u5

� ū2u3ū4 � u1ū2u3ū4u5

2 u1 � u3 � u4 � u5

3 1 � u1 � u2 � u4 � ū3ū5

where u1 = xj+2, u2 = xj+1, u3 = xj ,
u4 = xj�1, u5 = xj�2, x = inputs

TABLE I: Exact expressions for TurboAE-Binary encoder

outputs of the black-box CNN decoder of TurboAE-binary
may or may not correspond to true probabilities.

Although coupling systematic convolutional codes (SCCs)
with a BCJR decoder can be done as in [35], our codes
are nonsystematic convolutional codes (NCCs). To allow for
NCCs, we used the decoding architecture from [36]. Alterna-
tively, we can turn our nonrecursive NCCs into recursive SCCs
as in [37] since block 2 of both our exact and MILP approx-
imated representations are parities. A rigorous formulation of
the conversion can be found in the Appendix of [18].

To compare our codes with TurboAE-binary, we estimate
BERs on various channels w.r.t. uniformly chosen binary
blocks of length 100, uniformly chosen interleaver permu-
tations, and channel noise. For estimating TurboAE-binary’s
expected BER, we use the original training interleaver only.
For input message x 2 Fm

2 of length m, the channel outputs
y = x + z, and the channel noise vector z is independent
and identically distributed (iid) according to one of the dis-
tributions below, and parameterized by a signal-to-noise ratio
SNR(�2) = �10 log10 �2 for noise variance �2 2 R:

• AWGN: zi is iid ⇠ N (0, �2);
• Additive T-distribution Noise (ATN): zi is iid ⇠ T (3, �2);

T (⌫, �2) denotes the T-distribution with distribution pa-
rameter ⌫ and scaled to have variance �2.

We also benchmark against the following two Turbo codes:
• code rate R = 1/3 with generating function

�
1, 1+x

2

1+x+x2

�
,

which is denoted Turbo-155-7.
• code rate R = 1/3 with generating function�

1, 1+x
2+x

3

1+x+x3

�
, which is denoted Turbo-LTE.

In all experiments we use only 6 decoding iterations to
remain consistent with the benchmarking in [9]. All decoders
are unchanged for experiments on channels other than the
AWGN channel. That is, TurboAE-Binary is not fine-tuned
to the new channels, and BCJR (incorrectly) assumes the
channel is AWGN in its calculations. The expected BERs of
our different codes are shown in Figure 3. All experiments are
implemented using Python and Tensorflow [38], [39].

Examining the performance of the exact representation of
TurboAE-binary BER plot for the AWGN channel in Figure 3,
observe that by replacing the black-box decoder of TurboAE-
binary we get a fully interpretable Turbo code that performs
better than TurboAE-binary on every SNR. Although this
does not tell us whether or not the black-box decoder was
approximating BCJR, we do see that the black-box decoder
is suboptimal. On the other hand, the BER plot for the ATN

Fig. 3: Performance of TurboAE-binary, exact and MILP approxi-
mations of TurboAE-binary, and benchmark Turbo codes. Error bars
are 2 standard deviations on the estimated mean BER. For TurboAE-
binary, we used the weights provided by the authors of [9]; these
BER performances do not exactly reproduce figures in [9].

channel shows TurboAE-binary performing competitively with
the other tested codes. TurboAE-binary’s decoder appears
unusually robust compared to BCJR suggesting that it is
finding some tradeoff between performance on AWGN vs.
robustness on other channels, echoing the findings in [9].

For the AWGN channel the approximated representation
performs just as well as the exact expression (and better on
some SNRs). These BER plots suggest that the non-linearity
in TurboAE-binary may be a “bug”. That is, the CNN encoder
behind TurboAE-binary may have been approaching an affine
encoding function during training, but, due to complex training
dynamics, was not able to converge. Fourier analysis (see Fig.
4) may help explain this phenomenon.

VI. LEARNING

Up to now we have discussed the input-output behavior
of TurboAE-binary. In this section we give some remarks on
the training dynamics, that is, on the evolution of the output
during the learning process. The encoding function learned by
TurboAE is a real-valued Boolean function f : {0, 1}n ! R.

Figure 4 shows snapshots of the 32 Fourier coefficients
for the encoding functions after the three stages of training
TurboAE-binary: after training the real-valued-Boolean Tur-

Fig. 4: Fourier Coefficients of Block Encoder functions at different
stages of training. (a) Trained TurboAE, (b) Trained TurboAE with
STE module, (c) Trained TurboAE Binary

boAE (a), after taking the sign function (b), and the final
result after re-training using the Straight-Through Estimator
(STE) (c). Each coefficient corresponds to a parity function.
The largest coefficient are dominating in each snapshot. For
each block, the snapshots after each stage are similar, but the
dynamics during the first stage and the more subtle changes
after that require further study. The similarity of the Fourier
representations before and after applying the sign functions is
related to Plancherel’s theorem.

VII. CONCLUSION

We studied the interpretability of the TurboAE-binary deep-
learned error-correcting code. We conclude:

• TurboAE-binary is a nonlinear modified Turbo code with
few nonlinear terms, well approximated by a modified
Turbo code, that can be found by MILP.

• Influence heatmaps provide valuable information about
the encoding functions computed by the network.

• Interpretable representations (e.g. modified CC) need to
be flexible to accommodate approximations.

• Multi-output property testing and MILP are potential
techniques for further exploring interpretability.

• Using more interpretable modules, e.g. the iterated BCJR
decoder instead of learned decoders, can be advantageous.

• There lies potential in applying neural networks to search
the space of non-linear Turbo codes.

• The Fourier representation of Boolean functions can be
a useful tool for exploring the training dynamics.

Several related aspects need further study. These include
robustness of the properties found for other learned models
and robustness of the learned decoder (compared to BCJR) for
non-AWGN noise models. The approaches developed could
also be used for the hidden layers, to understand both the
final representation and the training dynamics.

REFERENCES

[1] H. Kim, S. Oh, and P. Viswanath, “Physical layer communication via
deep learning,” IEEE Journal on Sel. Areas in Inf. Theory, vol. 1, no. 1,
pp. 5–18, 2020.

[2] Y. Jiang et al., “Learn codes: Inventing low-latency codes via recurrent
neural networks,” IEEE Journal on Selected Areas in Information

Theory, vol. 1, no. 1, pp. 207–216, 2020.
[3] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate:

Channel auto-encoders, domain specific regularizers, and attention,”
in 2016 IEEE International Symposium on Signal Processing and

Information Technology (ISSPIT), 2016, pp. 223–228.
[4] Y. Jiang et al., “Mind: Model independent neural decoder,” in 2019 IEEE

20th International Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), 2019, pp. 1–5.
[5] J. Whang et al., “Neural distributed source coding,” CoRR, vol.

abs/2106.02797, 2021. [Online]. Available: https://arxiv.org/abs/2106.
02797

[6] R. K. Mishra et al., “Distributed Interference Alignment for K -user
Interference Channels via Deep Learning,” in International Symposium

on Information Theory (ISIT), 2021.
[7] H. Kim et al., “Deepcode: Feedback codes via deep learning,” IEEE

Journal on Sel. Areas in Inf. Theory, vol. 1, no. 1, pp. 194–206, 2020.
[8] Y. Jiang et al., “Joint channel coding and modulation via deep learning,”

in 2020 IEEE SPAWC, 2020, pp. 1–5.
[9] ——, “Turbo autoencoder: Deep learning based channel codes for

point-to-point communication channels,” in Proceedings of the 33rd

International Conference on Neural Information Processing Systems,
Dec. 2019, pp. 2758–2768.

[10] H. Ye, L. Liang, and G. Y. Li, “Circular convolutional auto-encoder for
channel coding,” in 2019 IEEE 20th International Workshop on Signal

Processing Advances in Wireless Communications (SPAWC), 2019, pp.
1–5.

[11] T. Ching et al., “Opportunities and obstacles for deep learning in biology
and medicine,” Journal of The Royal Society Interface, vol. 15, no. 141,
p. 20170387, Apr. 2018.

[12] H. Naik and G. Turán, “Explanation from Specification,” in Explainable

Agency in AI Workshop, 35th AAAI Conference, vol. abs/2012.07179,
2021. [Online]. Available: https://arxiv.org/abs/2012.07179

[13] J. M. Walsh, P. A. Regalia, and C. R. Johnson, “Turbo decoding as
iterative constrained maximum-likelihood sequence detection,” IEEE

Transactions on Information Theory, vol. 52, no. 12, pp. 5426–5437,
2006.

[14] J. Walsh, C. Johnson, and P. Regalia, “A refined information geometric
interpretation of turbo decoding,” in Proceedings. (ICASSP ’05). IEEE

International Conference on Acoustics, Speech, and Signal Processing,

2005., vol. 3, 2005, pp. iii/481–iii/484 Vol. 3.
[15] B. Muquet, P. Duhamel, and A. de Courville, “Geometrical interpre-

tation of iterative turbo decoding,” in Proceedings IEEE International

Symposium on Information Theory,, 2002, pp. 142–.
[16] “TurboAE github for TurboAE,” 2020. [Online]. Avail-

able: https://github.com/yihanjiang/turboae/blob/master/models/dta
cont cnn2 cnn5 enctrain2 dectrainneg15 2.pt

[17] “TurboAE github for TurboAE-binary,” 2020. [Online].
Available: https://github.com/yihanjiang/turboae/blob/master/models/
dta steq2 cnn2 cnn5 enctrain2 dectrainneg15 2.pt

[18] N. Devroye et al., “Interpreting deep-learned error-correcting codes,”
Jan. 2022. [Online]. Available: https://devroye.lab.uic.edu/research-2/
publications/

[19] S. Lin and D. J. Costello, Error Control Coding. Pearson, 2005.
[20] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge:

Cambridge University Press, 2008.
[21] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagat-

ing gradients through stochastic neurons for conditional computation,”
ArXiv, vol. abs/1308.3432, 2013.

[22] I. Hubara et al., “Binarized neural networks,” in Proceedings of the 30th

International Conference on Neural Information Processing Systems,
Dec. 2016, pp. 4114–4122.

[23] F. Gurski, “Efficient binary linear programming formulations for boolean
functions,” Statistics, Optimization & Information Computing, vol. 2,
no. 4, pp. 274–279, Nov. 2014.

[24] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

[25] R. O’Donnell, Analysis of Boolean functions. Cambridge University
Press, 2014.

[26] C. Molnar, Interpretable Machine Learning: A Guide for Making Black

Box Models Interpretable. Leanpub, 2019.
[27] O. Goldreich and L. A. Levin, “A hard-core predicate for all one-

way functions,” in Proceedings of the 21st Annual ACM Symposium

on Theory of Computing, 1989, pp. 25–32.
[28] O. Goldreich, Ed., Introduction to Property Testing. Cambridge

University Press, 2017.
[29] M. Parnas, D. Ron, and R. Rubinfeld, “Tolerant property testing and

distance approximation,” J. Comput. Syst. Sci., vol. 72, pp. 1012–1042,
2006.

[30] M. Blum, M. Luby, and R. Rubinfeld, “Self-testing/correcting with
applications to numerical problems,” J. Comput. Syst. Sci., vol. 47, pp.
549–595, 1993.

[31] M. Bellare et al., “Linearity testing in characteristic two,” IEEE Trans.

Inf. Theory, vol. 42, no. 6, pp. 1781–1795, 1996.
[32] N. Alon and P. H. Edelman, “The inverse Banzhaf problem,” Social

Choice and Welfare, vol. 34, pp. 371–377, 2010.
[33] S. Hart, “A note on the edges of the n-cube,” Discr. Math., vol. 14, pp.

157–163, 1976.
[34] L. Bahl et al., “Optimal decoding of linear codes for minimizing symbol

error rate (corresp.),” IEEE Transactions on Information Theory, vol. 20,
no. 2, pp. 284–287, 1974.

[35] C. Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: Turbo-codes,” IEEE Transactions on Communications,
vol. 44, no. 10, pp. 1261–1271, Oct. 1996.

[36] O. Y. Takeshita, O. M. Collins, and D. J. Costello Jr, “Turbo codes with
non-systematic constituent codes,” in 9th NASA Symposium on VLSI

Design, 2000.
[37] D. J. C. MacKay, Information Theory, Inference, and Learning Algo-

rithms. Cambridge, UK: Cambridge University Press, 2003.
[38] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts

Valley, CA: CreateSpace, 2009.
[39] M. Abadi et al., “TensorFlow: Large-scale machine learning on

heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[40] S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge Univ. Press, 2009.

APPENDIX A
RELATIONSHIP BETWEEN ARCHITECTURE AND INFLUENCE

MEMORY LENGTH, EXTENSION OF SECTION II.
Architecture dictates memory 9. The first 1-D conv layer

has 100 channels, where each channel has 100 outputs. For
each channel c, all its outputs are evaluated via the same
convolutional kernel/filter K1,c operating on a window of 5
inputs. Hence each output j of layer 1 depends on window
j � 2 : j + 2 of inputs. The second 1-D conv layer also has
100 channels, where each channel has 100 outputs. Again for
each channel c, all its outputs are evaluated via the same
convolutional kernel/filter K2,c operating on a window of
5 ⇥ 100 outputs from layer 1. Hence each output j of layer
2 depends on window j � 2 : j + 2 across all the channels
of layer 1. Finally the last layer is a single channel of 100
outputs, where each output j is evaluated using a linear layer
K3 operating on output j from all the channels of layer 2.
Thus fan-in of each output j when resolved up to the input
layer contains the inputs in window j � 4 : j + 4, which is of
size 9 as shown in Fig 5.

Fig. 5: Fan-in of j’th output of TurboAE Encoder Blocks. j’th output
depends only on inputs j-4:j+4

APPENDIX B
FORMULATION OF APPROXIMATING CODE AS AN MILP,

EXTENSION OF SECTION III-A
We next show that the approximation problem given by

Eq. (2) can be formulated as a Mixed-Integer Linear Pro-
gram (MILP). Recall that any modified convolutional code
with memory M can be parameterized with a binary vector
g 2 {0, 1}M+1 according to (1). Accordingly, we can write
xg(u) rather than xgconv(u). If we approximate the expected
value in (2) with a random sampling over {0, 1}k, problem
(2) can then be rewritten as:

g(j) = arg min
g2{0,1}M+1

1

N

NX

i=1

dH(xg(ui),xAE,j(u
i)), (4)

where ui is the ith random sample of u and N is the number
of random samples. To determine N in practice we repeatedly
solve the problem, each time increasing N by a constant factor,
until the solution stabilizes.

Next, we use the fact that � can be expressed as a system
of linear inequalities:

Proposition 3 (Gurski [23]). Given a, b, c 2 {0, 1}, let

�(a, b, c) = (a + b + c � 2, a � b � c, �a + b � c, �a � b + c)
and 0 be the all zero vector. Then a = b � c if and only if

�(a, b, c) 0.

This result is easy to generalize to expressions like Eq. (1):

Proposition 4. Given a 2 {0, 1} and b = (b1, . . . , bm) 2
{0, 1}m, m � 3, then a =

L
m

i=1 bi iff the following has a

solution:

cm = a

�(c2, b1, b2) 0 (5)
�(ci, ci�1, bi) 0, i = 3, . . . , m.

It is assumed that in each instance, the variables ci are

different.

Proof: (By induction.) We start with the base case m = 3,
where a = b1 � b2 � b3. Let

c3 = a, (6)

and
c2 = b1 � b2, (7)

which means that
c3 = c2 � b3 (8)

But according to Proposition 3, (7) is equivalent to
�(c2, b1, b2) 0 while (8) is equivalent to �(c3, c2, b3) 0.
These two inequalities, together with (6) exactly correspond
to (5)

Now let’s assume that the proposition holds for m = n�1.
We will then show that it also holds for m = n. For m = n,
we have a =

L
n

i=1 bi. Let

cn = a, (9)

and
cn�1 = b1 � · · · � bn�1. (10)

According to the inductive assumption, (10) is equivalent to
inequalities

�(c2, b1, b2) 0 (11)
�(ci, ci�1, bi) 0, i = 3, . . . , n � 1.

But cn = cn�1�bn which is equivalent to �(cn, cn�1, bn). The
last inequality, together with (9) and(11) exactly corresponds
to (5) for m = n. ⌅

Denote the system of inequalities (5) by INEQ(a,b). We
next formulate Problem (4) of finding the best approximation
with a modified convolutional code described by Eq. (1) as an
MILP. Let xi

`
and xi

AE,j`
denote the `th component of xg(ui)

and xAE,j(ui), respectively.

Theorem 5. Problem (4) is equivalent to the following Mixed-

Integer Programming Problem:

g(j) = arg min
g2{0,1}M+1

1

N

NX

i=1

kX

`=1

zi

`
,

Fig. 6: Convolutional Encoder Influence heatmaps. The forward generator in (a)-(d) is [101]. The feedback polynomial for the recursive
convolutional encoders in (c) and (d) is [111].

Fig. 7: TurboAE Constituent Learned Codes Influence heatmaps.

M (N, # input bits) g(1) HD1 g(2) HD2 g(3) HD3

5
(1, 100)

000100 41.67% 111001 39.58% 111101 41.67%
10 00111110001 5.21% 00101110000 2.08% 00110100000 18.75%
15 0011111000000001 5.21% 001000100000000 2.08% 0011010000000000 18.75%
5

(10, 1000)
001001 44.06% 000001 47.29% 001100 47.19%

10 0011111001 9.69% 00101110000 2.08% 00111100001 24.38%
15 0011111000000001 9.69% 0010111000000000 2.08% 0011110000000001 24.38%
5

(100, 10000)
001001 46.71% 101101 49.26% 011000 47.19%

10 00111110001 10.61% 00101110000 2.08% 00111100001 25.22%
15 0011111000000001 10.61% 0010111000000000 2.08% 0011110000000001 25.22%

TABLE II: MILP experimental results for the modified convolutional codes g(i) that best approximate the constituent learned codes fi,✓
of TurboAE-binary in the sense of (4). In bold is the length-5 g(i) save for the M + 1-st bit, shown in red.

such that for every i = 1, . . . , N , ` = 1, . . . , k

�(zi

`
, xi

`
, xi

AE,j`
) 0 (12)

and

INEQ(xi

`
, [g1 ui

`+L
, g2 ui

`+L�1,

. . . , gM ui

`+L�M+1, gM+1]). (13)

Proof: We have:

g(j) (1)
= arg min

g2{0,1}M+1

1

N

NX

i=1

dH(xg(ui),xAE,j(u
i))

(2)
= arg min

g2{0,1}M+1

1

N

NX

i=1

kX

`=1

xi

`
� xi

AE,j`

(3)
= arg min

g2{0,1}M+1

1

N

NX

i=1

kX

`=1

zi

`

where equality (1) is Eq. (4), equality (2) holds by definition
of Hamming distance and equality (3) holds due to Proposition
3 and Eq. (12). Finally, xi

`
is given by Eq. (1), which is

equivalent to Eq. (13). ⌅

The results of the MILP approximation are shown in Table
II. Three parameters need to be chosen to find the MILP
approximation: (a) M , the memory order of the modified
convolutional codes; (b) L, the lookahead horizon; and (c)
N , the number of input samples. The lookahead horizon L
needs to be sufficiently large to capture the dependency of
the current output bit on the future input bits. But increasing
L increases M (since at the least M � L), which in turn

increases the computation time. In our case L was chosen to
be L = 4.

We see that N needs to be sufficiently large to find the
correct solution (consistent with that produced by the influence
analysis). In other words, the space of inputs needs to be
properly sampled. In practice, N can be successively increased
by some factor µ > 1 and the computations repeated until the
solution stabilizes.

APPENDIX C
INFLUENCE AND PROPERTY TESTING, EXTENSIONS OF

SECTIONS III-B AND III-C
In this section we give more details about influence

heatmaps and present a proof of Theorem 1.
Influence calculation details. Recall the definition of in-

fluence of (3). Given an (n, k) linear code with a matrix
G = (gij), consider the corresponding multi-output Boolean
function f : {0, 1}k ! {0, 1}n with f = (f1, . . . , fn). Then

Inf
fj

(i) =

(
1 if gij = 1

0 if gij = 0
.

More generally, every (n, k) code can be represented by a
multi-output Boolean function f : {0, 1}k ! {0, 1}n. One can
then consider the matrix of influences Inffj (i), and visualize
the influences as a heatmap.

The heatmap for nonrecursive convolutional codes shows
the familiar staircase pattern shown in Fig. 6(a) – if the input is
interleaved before being sent to a non-recursive convolutional
encoder we obtain the heatmap in 6(b). Fig. 6(c) and (d) show
heatmaps for recursive convolutional codes without and with
interleaving before the convolution. These heatmaps are black
and white.

We sample the influences of the TurboAE-binary model in
the form of a 100 ⇥ 300 matrix. The 100 ⇥ 100 matrices for
the three blocks are shown on Fig. 7(a)-(d), where (c) and (d)
show the influences when the interleaver is kept, and when it
is removed. The heatmaps show that the influence structure
of TurboAE-binary is similar to that of a Turbo code. The
colors indicate that the influences are different from 0 and 1 to
varying degrees. The Turbo code is nonsystematic, i.e., there is
no block corresponding to a single diagonal. It is nonrecursive,
as the blocks show the staircase pattern. For the third block
this pattern is obtained after de-interleaving. Furthermore, the
convolutional codes involved have memory 5 in each case.
Interestingly, and we believe coincidentally, 5 is also the size
of the kernel of the CNN.

Proof of Theorem 1: (There is a tolerant testing algorithm
with ✏0 = ✏/18 for CSMP using O(1/✏) queries.)

The proof is a reduction to multi-parity. For g =
(g1, . . . , gn) : {0, 1}n ! {0, 1}n let g⇤ = (g1⇤, . . . , g⇤

n
),

where g⇤
i
(x) = gi(s�(i�1)(x)). Then g is CSMP iff g⇤

is multi-parity. The ⇤ operator is distance-preserving, i.e.,
d(f, g) = d(f⇤, g⇤) for every f, g. By the definition of dis-
tance, d(f, g) = Ei(d(fi, gi)) and d(f⇤, g⇤) = Ei(d(f⇤

i
, g⇤

i
)).

But d(fi, gi) = d(f⇤
i
, g⇤

i
), as the shift is a bijection between

the two domains. Hence Theorem 1 follows from the following
result.

Lemma 6. There is a tolerant testing algorithm (with ✏0 =
✏/18) for multi-parity using O(1/✏) queries.

Proof: is an adaptation of the Fourier analysis of linearity
testing [31]. Switching to truth values ±1, consider a function
f = (f1, . . . , fn) : {±1}n ! {±1}n. The following test
modifies the standard linearity test [30] by picking the function
indices i, j, k randomly as well. The componentwise product
of x and y is denoted by xy.

1) Pick indices i, j, k and vectors x, y randomly.
2) Accept if fi(x)fj(y) = fk(xy).
The test rejection rate is Pi,j,k,x,y(fi(x)fj(y) 6=

fk(xy)). The distance of f from multi-parity functions is
minS Pi,x(fi(x) 6= �S(x)). The following lemma is a refor-
mulation of the statement that the test rejection rate is at least
the distance.

Lemma 7. It holds that

Pi,j,k,x,y(fi(x)fj(y) = fk(xy)) max
S

Pi,x(fi(x) = �S(x)).

Proof: First note that fi(x)fj(y) = fk(xy) iff
fi(x)fj(y)fk(xy) = 1. Fix i, j, k. Then it follows as in [40],
p. 479, that

Ex,y(fi(x)fj(y)fk(xy)) =
X

S

f̂i(S) · f̂j(S) · f̂k(S).

Taking expectations w.r.t. i, j, k we get

Ei,j,k,x,y(fi(x)fj(y)fk(xy)) =

Ei,j,k

0

@
X

S

f̂i(S) · f̂j(S) · f̂k(S)

1

A =

X

S

Ei,j,k

⇣
f̂i(S) · f̂j(S) · f̂k(S)

⌘
=

X

S

(Ei(f̂i(S)))3
✓

max
S

Ei(f̂i(S))

◆
·
X

S

(Ei(f̂i(S)))2
✓

max
S

Ei(f̂i(S))

◆
·
X

S

Ei((f̂i(S))2) =

✓
max

S

Ei(f̂i(S))

◆
· Ei

0

@
X

S

(f̂i(S))2

1

A =

max
S

Ei(f̂i(S)) = max
S

Ei(fi(x)�S(x)).

If Pi,j,k,x,y(fi(x)fj(y) = fk(xy)) = 1 � ↵ then it
holds that Ei,j,k,x,y(fi(x)fj(y)fk(xy)) = 1 � 2↵. Thus
Ei,x(fi(x)�S(x)) � 1 � 2↵ for the maximal S above, and
Pi,x(fi(x) = �S(x)) � 1 � ↵. ⌅

Now the property testing algorithm is the following: repeat

the test 2/✏ times and accept iff each round accepts.

Assume that the distance of f from multi-parity functions
is at least ✏. Then by Lemma 7 the the acceptance probability
of the test is at most (1 � ✏)2/✏ < 1/e2 < 1/3, and so f is
rejected with probability at least 2/3.

Assume that the distance of f from multi-parity functions
is at most ✏/18. The rejection rate of the testing algorithm is
upper-bounded by d · t · q, where d is the distance, t is the
number of repetitions and q is the number of points queried
in one round [29]. This follows from the fact the probability
of ever drawing a point from the error region of the closest
multi-parity function is at most d · t · q by the union bound.
This implies that f is rejected with probability at most 1/3.
This completes the proof of Lemma 6, and thus of Theorem 1
as well. ⌅

Self-correction for linearity testing allows to determine the
target function value for every input with high probability [30].
In the multi-parity case computing �S(x) for any fixed x can
be achieved by computing

fj(y)fk(xy)

for random j, k, y. If the distance of f from multi-parity
functions is at most ✏ then Pj,y(fj(y) 6= �S(y)) ✏ and
Pk,y(fk(xy) 6= �S(xy)) ✏. Thus with probability at least
1 � 2✏ we compute �S(y) · �S(xy) = �S(x).

APPENDIX D
PROOF OF THEOREM 2 IN SECTION IV

Part a): Block 1

Let f be a 5-variable Boolean function with influences
Inf1(f) = Inf5(f) = 15/16 and Inf2(f) = Inf3(f) =
Inf4(f) = 13/16. Consider the function g = f �

L5
i=1 ui.

It is sufficient to determine the possible functions g as f =
g �

L5
i=1 ui.

For every variable i it holds that Infi(f) + Infi(g) = 1,
as f(u) 6= f(u(i)) iff g(u) 6= g(u(i)) for every edge (u, u(i)).
Thus Inf1(g) = Inf5(g) = 1/16 and Inf2(g) = Inf3(g) =
Inf4(g) = 3/16. Note that influence Infi(g) is the fraction
of edges along dimension i where the function values are
different. Thus, for example, the number of edges along
dimension 2 is 3.

Let T (g) = {u : g(u) = 1}, E be the set of hypercube
edges in T (g) and edge boundary size �(g) be the number of
edges between T (g) and its complement. It holds that �(g) =
5|T (g)|�2|E|. It follows from the influences that �(g) = 11.
Assume w.l.o.g. |T (g)| 16 (otherwise consider the negation
of g).

We claim that T (g) = {a, a(1), a(5)} for some a 2 {0, 1}5.
First we show that |T (g)| = 3. If |T (g)| 2 then �(g)

10. If 4 |T (g)| 16 then �(g) � 12 by the exact formula in
the edge-isoperimetric theorem [33]. We note that for |T (g)| =
4 this follows directly: the maximal number of edges in T (g)
is 4, corresponding to a 4-cycle (5 edges would have to contain
a triangle), and thus �(g) � 20�8 = 12. This is not sufficient
for the general claim as the smallest edge boundary size is not
a monotone function of set size.

For |T (g)| = 3 we need |E| = 2 to get �(g) = 11. This im-
plies that E is a path of two edges, thus T (g) = {a, a(i), a(j)}.
In order to match the specifications, it has to be the case that
{i, j} = {1, 5}.

If a = 01110 then T (g) = {01110, 11110, 01111}. Thus
g = u2u3u4ū5 _ ū1u2u3u4 = (ū1 _ ū5)u2u3u4. Using y_z =
1 � ȳz̄ we get g = (1 � u1u5)u2u3u4.

For other values of a one gets the unate versions of this
polynomial. Considering negations of these polynomials one
gets the other unate versions.

Part b): Block 2

Assume that for a function f it holds that Inf1(f) = 1.
Consider u = (u1, . . . , un) and let u0 = (u2, . . . , un). The
identity f(u) = f(0, u0)�u1(f(0, u0)� f(1, u0)) implies that
f(u) = f(0, u0) � u1. Influences of the subfunction fu1=0 =
f(0, u0) are unchanged, i.e., Infi(fu1=0) = Infi(f) for i >
1.

For the function f in block 2, Inf2(f) = 0 implies that it
does not depend on u2, and the argument above implies that
it is a parity of the other 4 variables or their negation.

Part c): Block 3

The claim in Part b) implies that f(u) is of the form a�u1�
u2 � u4 � g(u3, u5), where both variables of g have influence
1/2. Here g can be a conjunction or a unate variant (these are
all 2-variable functions excluding constants, variables, negated
variables and the two affine functions). ⌅

APPENDIX E
EXTENSION OF SECTION V

Here we establish the generalized conversion between non-
recursive nonsystematic convolutional codes (NNCCs) and
recursive systematic convolutional codes (RSCCs). First some
preliminaries:

Definition 8. A rate 1/n generalized convolutional code is

a tuple C = (h1, h2, . . . , hn, g, M). M 2 N is our memory,

h1, . . . , hn : F2 ⇥ FM

2 ! F2 are our encoders, and g : F2 ⇥
FM

2 ! F2 is our feedback. A bit u 2 F2 and state s 2 FM

2 is

encoded as (h1(u, s), h2(g(u, s), s), . . . , hn(g(u, s), s)), and

the next state is set to (g(u, s), s1, . . . , sM�1). The state is

always initialized as 0.

The following theorem establishes sufficient conditions for
converting a generalized NNCC to an RSCC:

Theorem 9. Let C = (h1, h2, (u, s) 7! u, M) be a nonrecur-

sive rate 1/2 NCC of memory M . If 8s 2 FM

2 8u 2 F2 we

have that h1(u, s) 6= h1(¬u, s), then there exists a feedback

function g s.t. C 0 = ((u, s) 7! u, h2, g) has the same set of

codewords as C.

Proof: We will use h1 to directly construct g. Consider the
function H : F2 ⇥ FM

2 ! F2 ⇥ FM

2 defined as (u, s) 7!
(h1(u, s), s).

Note that H is injective. To see this, let (u, s), (u0, s0) 2
F2 ⇥ FM

2 . Then if s 6= s0, H(u, s) 6= H(u0, s0). On the other

hand, if s = s0 and u 6= u0, then because h1(u, s) 6= h1(¬u, s),
we know H(u, s) 6= H(u0, s0). Thus H(u, s) = H(u0, s0)
iff (u, s) = (u0, s0) and H is injective. Since H is injective
and because its domain and codomain are finite with equal
cardinality, we know H is surjective and thus a bijection.

Define g to be (u, s) 7! ⇡1(H�1(u, s)), where ⇡1 is the first
coordinate projection. That is, C 0 = ((u, s) 7! u, h2, g, M).
Let C(C 0) denote the set of codewords of C 0. Now it remains
to show C(C 0) = C(C). Suppose we are given input message
is u 2 Fk

2 for message length k, and, after applying C,
we get encoded streams x(1),x(2) 2 Fk

2 . Let u0 = x(1) be
the input to C 0 and let x(1)0 ,x(2)0 2 Fk

2 be the encoded
streams produced. By construction, x(1) = x(1)0 . To see the
remaining encoded streams are the same, denote rt = (ut, st)
and r0

t
= (g(u0

t
, s0

t
), s0

t
) the inputs to the second encoder for

C and C 0 respectively at timestep t 2 [k]. To show they are
the same, we induct on t 2 [k]. At t = 0, we have r0 =
(u0, 0) = (⇡1(H�1 � H(u0, 0)), 0), 0) = (g(h(u0, 0), 0), 0) =
(g(u0

0, 0), 0) = r00. Suppose rt�1 = r0
t�1. Then at timestep t,

C receives ut, and rt = (ut, st). Since rt�1 = r0
t�1, we know

st = s0
t

(C and C 0 are convolutional codes). Furthermore,
ut = ⇡1(H�1 � H(ut, st)) = g(h(ut, st), st) = g(u0

t
, s0

t
).

Thus rt = (ut, st) = (g(u0
t
, s0

t
), s0

t
) = r0

t
and h2(rt) = h2(r0t)

8t 2 [k]. Therefore x(i) = x(i)0 8i 2 [2] and C(C) ✓ C(C 0).
To get the opposite direction inclusion, we can apply a

similar argument. Let u0 2 Fk

2 be the input to C 0 and define
u 2 Fk

2 , the input to C, so that ut = g(u0
t
, s0

t
) for t 2 [k]. We

apply induction on rt, r0t 2 F2 ⇥FM

2 , the inputs to the encoder
functions for C and C 0 respectively for t 2 [k]. At t = 0, we
have r0 = (u0, 0) = (g(u0

0, 0), 0) = r00. Suppose rt�1 = r0
t�1.

Then at timestep t, C 0 receives u0
t
, and r0

t
= (g(u0

t
, s0

t
), s0

t
).

Since rt�1 = r0
t�1, we know st = s0

t
(C and C 0 are

convolutional codes). Furthermore, u0
t

= g(u0
t
, s0

t
) = ut.

Thus rt = (ut, st) = (g(u0
t
, s0

t
), s0

t
) = r0

t
, so we have that

rt = r0
t

8t 2 [k]. To see stream 1 is the same, observe that
8t 2 [k] we have that x(1)

t
= h(ut, st) = h(g(u0

t
, st), st) =

⇡1(H � H�1(u0
t
, st)) = ⇡1(u0

t
, st) = u0

t
= x(1)0

t
. Since

rt = r0
t

8t 2 [k], we also see that x(2) = x(2)0 . Therefore
C(C 0) ✓ C(C), and we have that C(C 0) = C(C). ⌅

Since for an NNCC, (h1, h2, (u, s) 7! u, M) has the same
set of codewords as (h2, h1, (u, s) 7! u, M), the theorem also
holds if any other encoding function has the desired property.

