
Deep Learning-Aided Coding for the Fading
Broadcast Channel with Feedback

Siyao Li, Daniela Tuninetti, and Natasha Devroye
University of Illinois at Chicago, Chicago, IL 60607, USA

Email: {sli210, danielat, devroye}@uic.edu

Abstract—We consider the design of practical codes for a
symmetric two-user fading Gaussian Broadcast Channel (BC)
with feedback. We construct a two-phase coding scheme with
the help of deep Neural Networks (NNs) that seeks to optimize
the encoder and decoders jointly. Interpreting a communication
system as an autoencoder (denoted by AE), we train the AE
under various scenarios of noiseless feedback signals. Perfor-
mance evaluation is presented for Rayleigh distributed channel
state, which reveals the existence of a trained NN-based two-
phase model that outperforms state-of-the-art codes in the low
SNR regime. Considering the availability of feedback signals, we
train the AE with different inputs, and observe that feedback
consisting of received signals appears to be more beneficial than
channel states to boost reliability under the proposed scheme.
We provide initial interpretations of the encoding scheme which
uses channel state feedback.

I. INTRODUCTION

In the fifth generation (5G) communication systems, the
demand for codes with short message lengths and low error
rates has significantly increased. Careful design of the physical
layer helps in satisfying these requirements. A channel model
particularly important in downlink wireless communications,
is the Fading Additive White Gaussian Noise Broadcast Chan-
nel (F-AWGN-BC), where the channel between the single
transmitter or base-station sending signal X , and multiple
users is modeled as Yu =

√
SuX + Nu for user u, where

Nu is the Additive White Gaussian Noise (AWGN), and Su
is the fading parameter, or Channel State Information (CSI).
When the transmitter has independent messages to send to
different subsets of users, the capacity region, the largest set
of rates for which the probability of error vanishes as the
block length increases, captures some of the tension seen in
BCs: a single signal must be encoded such that when different
quality versions of this signal are received at the users, each
can extract their own intended message(s).

Channel Output Feedback (COF) is commonly used in
communication systems to send back information about the
decoding process as well as the channel dynamics. Although
COF does not increase the capacity region of the Point-to-
Point (P2P) memoryless channel, it can simplify the trans-
mission schemes and improve the reliability dramatically [1],
[2]. COF can strictly enlarge the capacity region of multiuser
channels [3]. Several linear coding schemes are proposed
for AWGN-BC with COF without fading [3]–[7] and with
fading [8], [9].

Recently, Neural Networks (NNs) have started to attract
significant attention in the context of wireless communications
and networking [10]–[14], since the development of smart

devices and mobile applications has significantly increased
the autonomy of a wireless network. In particular, Recurrent
Neural Network (RNN) based architectures, have been used
for learning feedback codes in communication systems lever-
aging feedback from the system in [15] as well as predicting
the channel fading in [16], [17]. [18] demonstrates a Deep
Learning approach for training a static AWGN P2P channel
with noisy feedback. [19] presents a two-phase coding scheme
for the multiuser degraded broadcast channel without feed-
back, which is able to learn to communicate on this channel
using superposition coding. [20] evaluates the performance of
an AE for interference channels without feedback.

Contribution: We build on the above mentioned promis-
ing results, and focus on using RNN-based strategies to build
coding schemes for F-AWGN-BC with COF. We propose a
deep learning-aided two-phase scheme and compare it with
the state-of-the art coding schemes for F-AWGN-BC without
feedback in [21] and with COF in [8], [9]. We train two
models: one with feedback of received signal Yu, the other
with both Yu and Su. Our trained models suggest that the
received signal Yu plays a more important role on improving
the Bit Error Rate (BER) than the channel state Su at low
SNR. We also provide initial interpretations of the codewords
constructed by the RNN which uses channel state feedback.

Paper Organization: Section II introduces the F-AWGN-
BC system model and the NN used in this work; Section III
presents the deep learning-aided AE; Section IV includes the
simulation results; Section V concludes the paper.

Notation: In this paper, we represent user indices u
and time indices t by subscripts, such as Yu,t. Sequences of
Random Variables (RVs) are denoted by boldface, such as
Yu := [Yu,1, · · · , Yu,N ]T . To denote explicitly the dimen-
sionality of a vector, we use superscripts and subscripts in
the following manner: Yj

u,i := [Yu,i, · · · , Yu,j ] for i ≤ j

and Yi−1
u := [Yu,1, · · · ,Yu,i−1]

T . R and Rn represent sets
of real scalars and n-dimensional real column vectors, respec-
tively. The notation [n] for n ∈ N denotes the set {1, 2, · · ·n}.
We use R≥0 and N to denote the set of nonnegative real
numbers and natural numbers. We write F(·) for cumulative
distribution and P(·) for the probability of a measurable event
within the parentheses. N (µ, σ2) represents a real Gaussian
distribution with mean µ and variance σ2. We use sgn(x) to
denote the sign function, where sgn(x) := 1 if x ≥ 0 and
sgn(x) := −1 if x < 0.



II. SYSTEM MODEL AND DEEP LEARNING BASICS

A. System model

In this paper, we consider a two-user real-valued F-AWGN
channel with BPSK modulation. The received signal Yu,t for
user u ∈ [2] at time t ∈ [N ] is

Yu,t =
√
Su,tXt + Zu,t ∈ R, (1)

where Xt ∈ R denotes the transmitted signal, Zu,t ∼
N (0, σ2

n) is the real-valued AWGN with zero mean, power
σ2
n, and Su,t ∈ R≥0 is the channel state of user u with

alphabet S. We assume that the RVs (S1, S2) are independent
and form a memoryless process over time, that the noise
variables (Z1, Z2) are independent across users and time,
and that the input is subject to the average unit power
constraint E[X2] ≤ 1. We also assume that Su,t, and Zu,t are
independent; after each transmission, the instantaneous fading
Su,t is known at the receiver side and there exists a noiseless
feedback link that transmits one-step delayed information of
feedback from the receivers to the transmitter.

A code for the F-AWGN-BC with two receivers is defined
as follows. The transmitter must convey Ku information bit
bu = (bu,1, · · · , bu,Ku

) ∈ {0, 1}Ku reliably to user u ∈ [2].
The rate for user u = 1, 2 is Ru = Ku/N , where N is the
number of time slots used to transmit all K1+K2 information
bits. We distinguish different cases based on the amount of
CSI at the transmitter (CSIT):

1) no CSIT: Xt(b1,b2,Y
t−1
1 ,Yt−1

2 ), t ∈ [N ];
2) only CSIT: Xt(b1,b2,S

t−1
1 ,St−1

2 ), t ∈ [N ];
3) COF: Xt(b1,b2,S

t−1
1 ,St−1

2 ,Yt−1
1 ,Yt−1

2 ), t ∈ [N ],

where Xt(·) is the encoding function at time t. User u ∈ [2]
estimates b̂u = decu(Y

N
u ,S

N
1 ,S

N
2 ) for some decoding func-

tion decu. Accordingly, the coding scheme for F-AWGN-BC
without COF discussed in Section IV means Xt(b1,b2), t ∈
[N ]. That is, the encoding function only depends on the
information bits for two users. The average bit error rate for
user u is defined as BERu := 1

Ku

∑Ku

i=1 P(̂bu,i 6= bu,i). For
the BC, the probability of error is defined to be the probability
the decoded message is not equal to the transmitted message
for any user. Similarly, we define the joint average bit error
rate as

BER :=
1

max(K1,K2)

max(K1,K2)∑
i=1

P
(
b̂u,i 6= bu,i,∃u ∈ [2]

)
. (2)

To simplify the analysis, we consider the case where K1 =
K2, i.e., the information bits for the two users are the same.

B. Neural networks

Comprehensive theory of deep learning is presented in [22].
We now will briefly introduce some main ideas and concepts
related to this work based on [23].

A NN consists of many connected neurons. For a single
neuron, the weighted inputs are summed together, with a bias
optionally added, and the result is forward to a nonlinear ac-
tivation function. Commonly used activation functions are the

sigmoid, tanh and rectified linear unit, which are respectively
defined as

gsigmoid =
1

1 + e−x
, gtanh =

ex − e−x

ex + e−x
, grelu = max(0, x).

In a feedforward NN, the neurons are arranged in layers
without feedback connections. Each layer i with ni inputs
and mi outputs performs the mapping f (i) : Rni → Rmi

with the weights and biases of the neurons as parameters.
Denote x the input and y the output of the NN, the mapping
between input and output is defined by a chain of functions
depending on the set of parameters w,b by y = f(x;w,b) =
f (L−1)

(
f (L−2)

(
· · · f (0)(x)

))
, where L is the number of

layers and is also called depth. The l-th layer is called dense
or fully-connected if f (l)(x(l−1);W (l), b(l)) = g(W (l)x(l−1)+
b(l)), where g(·) is an activation function and x(l−1) is the
output vector of the previous layer. For feedforward NNs, the
NN only handles individual time steps. In a Recurrent Neural
Network (RNN), the connected neurons form a direct graph
along a temporal sequence. RNNs allow previous outputs to
be used as inputs while having hidden states. For a traditional
RNN, at each time slot t, the hidden state ht and the output
yt are expressed as ht = g1(Whhht−1 +Whxxt + bh) and
yt = g2(Wyhht + by), where Whh,Whx,Wyh, bh, by are
coefficients that are shared temporally and g1, g2 are activation
functions. The vanishing and exploding gradient phenomena
are often encountered in the context of traditional RNNs.

An elegant RNN structure, Long Short-Term Memory
(LSTM) was designed in 1997 [24] to overcome this issue.
It deals with long-term dependency by introducing memory
cells in the recurrent hidden layer and multiplicative gates that
regulate the information flow. A simplified version of LSTM
structure, Gated Recurrent Unit (GRU) was introduced in
2014 [25]. For the sake of space, the mathematical expressions
of LSTM and GRU are omitted here, which can be found
in [24] and [25] respectively.

To find the optimal parameters of a NN, a specific loss
function and a training set of known input-output mappings
are required. By gradient descent optimization methods and
the backpropagation algorithm [26], parameters minimizing
the loss function can be found over the training set. In this
work, we use Binary Cross-Entropy (BCE) loss function of
the distribution Q relative to a distribution P over a given set
defined as

HP(Q) = (3)

− 1

N

N∑
i=1

P(bi) log(Q(b̂i)) + (1− P(bi)) log(1−Q(b̂i)).

Based on our setup, P(bi) ∈ {0, 1} is the i-th target informa-
tion bit and Q(b̂i) ∈ [0, 1] is the predicted probability of the
target information bit.

III. DEEP LEARNING AIDED TWO-PHASE SCHEME

With COF, the transmitter encodes current transmitted
symbol based on the information bits and previous received



signals. The receiver decodes the information bits after col-
lecting all the symbols it received. According to this recurrent
structure, we choose RNN structure as our AE.

There are some hyperparameters to be selected before
constructing a NN, such as the RNN structure, the number
of hidden layers, and the number of units of each layer.
We focus on differences between deep learning-aided AE
and the mathematically derived linear scheme proposed in
our previous work [8], [9]. We restrict attention to a fixed
set of hyperparameters based on our empirical results. We
refer readers to [27] for more research on hyperparameter
optimization.

A. Autoencoder structure

The two-phase scheme is inspired by our previous work
in [28] and the autoencoder structure is inspired by [15]. In
this work, we stack LSTM and GRU together aiming to gain
better training accuracy and convergence efficiency from both
structures [29], [30]. We consider a symmetric F-AWGN-BC
with COF, fix the rate R = 1/3 and number of information
bits K = 50 for each user. The overall blocklength is thus
N = 150.

Encoding: The structure is demonstrated in Fig. 1(a).
The encoding process has two phases. Phase 1 consists of
2K = 100 time slots, where we fix the first 50 time slots
to process the information bits destined to user 1 and the
second 50 time slots for user 2 (note that the order can be
flipped); phase 2 consists of 50 time slots, where we transmit
the refinements of the information bits transmitted in phase
1. Specifically, in phase 1, at each time slot, the transmitter
first modulates the information bits bu,t, u ∈ [2], t ∈ [K]
intended for user u by BPSK. Then, the weighted parameters
wu,t, u ∈ [2], t ∈ [K] are applied to the normalized signals
to assign power to each information bit adaptively. Lastly,
the weighted signals are normalized to satisfy the power
constraint before transmission. In phase 2, at each time slot,
the deep learning-aided two-phase scheme takes the input of
size 14, which are b1,t, b2,t, the information bits to each user,
and Y1,t, Y2,t, Y1,K+t, Y2,K+t, S1,t, S2,t, S1,K+t, S2,K+t,
the COF from both users in phase 1, as well as
Y1,2K+t−1, Y2,2K+t−1, S1,2K+t−1, S2,2K+t−1, the one-
time-slot-delayed COF from both users of phase 2. The input
is passed through a deep RNN, consisting of two layers of
GRU and one layer of LSTM stacking on top of each other,
which means the output of the previous layer is the input of
the current layer. This deep RNN is connected to a dense
layer followed by a weighted parameter. Similar to phase
1, the generated signals are normalized to satisfy the power
constraint before transmission.

Decoding: The receivers start decoding after all infor-
mation bits are received. Each decoder has the same structure
illustrated in Fig. 1(b). The input of the decoder is (Y Nu , SNu ),
the received signals and channel fading in two phases. The
decoder has similar structure to the encoder in phase 2, which
consists of two layers of bi-directional GRU, one layer of bi-
directional LSTM stacking on top of each other, and a dense

(a) Encoder (b) Decoder

Fig. 1: Deep learning-aided AE structure

layer outputting the probability of the estimated information
bit being one.

Training: We apply the zero padding technique presented
in [15] and train the RNN at a fixed value of SNR= 2 dB.
The encoder and decoders are trained jointly in epochs. At
the end of each epoch, the gradient of the loss function in (3)
is calculated and propagated back over the entire training set
and the parameters of the entire NN are updated accordingly
using the Adam optimization method [31]. The parameters
are updated according to the sum of the BCE loss function
of each user in this symmetric setting. Note that the goal
of the normalization step in phase 1 before multiplying the
weighted parameter is to ease the training. As the channel
fading and noise is generated randomly for each time slot,
the receivers rarely receive the same signal twice. While
we fix the message bits for each user to K = 50, we can
train on a large set by increasing the number of epochs. The
training process is iteratively carried out until the network
reaches a certain convergence condition. We use a cyclical
scheduler [32] to adjust the learning rate based on the number
of epochs. Once the training process completes, the trained
encoder and decoders are evaluated using test data based on
a range of SNRs.

Note that our proposed scheme can be easily extended to
more than two users. Specifically, the COF of all the users is
feed back as the input of the encoder, the each user performs
the same decoding steps as demonstrated in Fig. 1(b), and
the training is evaluated based on the sum of the BCE loss
functions of all users. The number of information bits for each
user and block length will also be changed accordingly.

B. Computational complexity and discussions

We specify the parameters in Table I. As illustrated in
Fig. 1, the encoder in phase 2 has similar structure to the
decoder. The GRU (LSTM) and bi-GRU (bi-LSTM) employed
in encoder and decoder both have 50 (25) hidden neurons.
There are NGRU = 2.52 × 104 and NLSTM = 7.7 × 103

trainable parameters in the RNN of the encoder. Considering
the power allocation, dense layer, and decoder parameters,
there are 2.09983 × 105 trainable parameters in total. Based
on the NN configurations in Table I, the BCE loss function
converges after around 2000 epochs.



TABLE I: NN configuration.

Parameters Values
Rate 1

3
Batch size 200
Information bit size 50
Loss function BCE
GRU input size (encoder) 14
GRU hidden neurons 50
GRU layer number 2
LSTM input size (encoder) 50
LSTM hidden neurons 25
LSTM layer number 1
Dense + sigmoid output size 1
bi-GRU input size (decoder) 6
bi-LSTM input size (decoder) 100

Since deep learning for communications is still a relatively
new field, little is known about optimal data representations,
loss functions, and training strategies. Here we do not claim
any optimality of our approach. There are many other possibil-
ities to construct and train a NN for communication systems.
For example, binary signals can be represented by binary,
modulated symbols, integers or one-hot vectors. [15] showed
that using binary information bits as input for P2P Gaussian
channels can significantly reduce BER comparing with the
state-of-the-art codes; [19] encoded messages to each user as
a one-hot vector and demonstrated that the autoencoder learns
to use superposition coding over the degraded BC. In addition,
one can select different NN structures with different number
of layers and hidden neurons. The selection of training SNR
is not obvious as well. In terms of generalization, it would be
desirable for a learned system that can operate at any SNR,
regardless at which SNR it was trained. However, we have
observed that this is in general not the case. Training at low
SNR does not fit the high SNR regimes and vice versa. Since
we choose the binary representation and treat the decoding
process as a classification problem, the BEC loss function is
a common choice. While for alternate data representations,
the choice of loss function is less clear.

IV. NUMERICAL EVALUATIONS

In this section, we set rate R1 = R2 = 1
3 and illustrate

the performance of the deep learning-aided two-phase scheme
and compare it with the state-of-the art coding schemes for
F-AWGN-BC without feedback in [21] and with COF in [8],
[9]. We take a Rayleigh distribution of each channel state
with distribution function F(q, σs) = 1 − e−q2/(2σ2

s), where
q ∈ [0,∞) and σs is the scale parameter.

As shown in Fig. 2, we use solid lines to present the
joint BER of two users defined in (2) and evaluate different
SNRs by fixing the scale parameter σs = 1 and varying the
noise power σ2

n. With unit transmission power constraint, the
average SNR is 2/σ2

n. Since we consider a symmetric channel
and rate setting, the BER of each user is approximately the
same. Thus, we only plot the BER of one of the users with
dashed lines. Specifically, the deep learning-aided AE with
COF introduced in Section III is demonstrated in red, the
linear coding scheme with COF presented in [8], [9] is plotted
in blue, and the LDPC based scheme without COF in [21] is
illustrated in black. Note that for the linear coding scheme,

Fig. 2: Coding schemes performance comparison.

Fig. 3: Deep learning-aided two-phase scheme performance
comparison.

the achievable rate Ru = 1
N logMu where N ∈ N is the

number of iteration round and Mu ∈ N is the number of total
messages destined to user u. Each user updates an estimate for
the message at every iteration round t ∈ N and as the number
of iterations increase, the BER decreases. For a fixed rate, N
increases leading to Mu increases as well. The penalty is that
more information bits are needed to represent each message
which enlarges the block length. The LDPC scheme plotted
here is based on the regular LDPC code. The BERs of the
LDPC scheme reduces significantly when SNR > 5dB and
the performance can be further improved when employing
irregular LDPC code. We notice that the deep learning-aided
AE works well for low SNRs. At high SNR, it does not
perform as well as the linear or LDPC codes without feedback,
and should in principle be re-trained at this SNR. This is a
drawback of such deep learning-based scheme, which is the
generalization challenge.

In Fig. 3, we explore the benefit of a trainable Phase Power
Allocation (PPA) weight and take different types of delayed
feedback signals into consideration. Since the BER of each
user has similar trend and slightly better performance than
the joint BER, we only plot the joint BER in Fig. 3 to get
a clear view. The red lines are from Fig. 2 and are used as
the benchmark. Instead of fixing the power for each phase as
some constant, we add a trainable PPA parameter and plot the
BERs in green. Let the average power constraint P = 1. The
training result shows that the RNN tends to allocate power
P1 = 0.976 to the “raw” information bits intended for each



(a) σs = 1. (b) σs = 1.

(c) σs = 10. (d) σs = 10.

Fig. 4: Codewords in phase 2 with respect to the channel fading in phase 1.

user in phase 1 and P2 = 1.058 to the codewords in phase
2. Herein, we use “raw” to indicate that the information bits
are not coded by the RNN and only modulated by BPSK
followed by a power allocation parameter. Next, we consider
the case where the received signals Y1,t, Y2,t and channel state
(S1,t, S2,t) experience longer delay and fix the delay to be
equal to K time slots with BERs illustrated in magenta. The
input size of the RNN in phase 2 becomes 10 and the PPA
parameters are P1 = 1.036 and P2 = 0.928. This indicates
that the encoder should assign slightly more power to the
“raw” information bits to resist the channel noise when timely
feedback is not available. The BERs in black presents the
case where CSIT is not available but one-slot-delayed received
signals (Y1,t−1, Y2,t−1) from two users are available at time
slot t. The input size of the RNN in phase 2 becomes 8.
Here the PPA parameters are similar to the AE with COF and
P1 = 0.981 and P2 = 1.038. The BERs in blue demonstrates
the case where only one-slot-delayed CSIT (S1,t−1, S2,t−1)
from two users are available at time slot t. The input size
of the RNN in phase 2 is still 8 and the PPA parameters
are P1 = 1.07 and P2 = 0.86. Comparing the black, green
and blue dashed lines in Fig. 3, it is interesting to notice
that sending back the delayed received signals Yu is more
beneficial than the delayed CSIT Su in terms of reliability.
Considering these PPA parameters, we claim that the RNN
tends to allocate slightly more power to the “raw” information
bits when the signals feeding back to the system are not useful
enough for the following encoding process under the training

SNR= 2 dB and Rayleigh distribution with σs = 1.
We also notice that by fixing the noise power σ2

n, as the
scale parameter σs grows, the SNR increases. Thus, most of
the signals transmitted in phase 1 can be amplified which
leads to the BERs falling off. As the CSI knowledge at the
transmitter is crucial in real-world wireless communication
systems, we would like to investigate how the RNN makes use
of the delayed CSIT in different scale cases. In the following,
we continue with the model that only feeds back the delayed
CSIT to the transmitter and compare the mechanisms of the
RNN by fixing σ2

n = 1.26 and evaluating σs = 1 and 10. We
train the AE based on average SNR = 2 dB for Fig. 4(a), 4(b)
and SNR = 22 dB for Fig. 4(c), 4(d) separately and obtain
models that give BERu = 0.09 and BERu = 2.0 × 10−5

respectively. Fig. 4(a) and 4(b) present the codewords in phase
2 with respect to the channel fading of user 1 in the first half
of phase 1 and the channel fading of user 2 in the second
half of phase 1 when σs = 1; Fig. 4(c) and 4(d) present
the case where σs = 10. The codewords in phase 2 are
the refinement of the information bits transmitted in phase
1, which are illustrated by different colors and markers in
Fig. 4.

By Fig. 4, the RNN learns to i) allocate little power
to the information bits that were erased in phase 1 (i.e.,
Su,t = 0); ii) allocate more power to the information bits
that experienced dramatic fading in phase 1 (i.e., Su,t → 0);
iii) allocate less power to the information bits that were
enhanced by the channel state in phase 1 (i.e., Su,t > 1).



We trained the AE with a range of σs and observed a
somewhat linear relationship between the channel state in
phase 1 and the coded signals in phase 2. That is, the
codewords in phase 2 are mapped to numbers approximated
by linear functions X1,2K+i ≈ sgn(1− 2b1,i)(γ−αS1,i) and
X2,2K+i ≈ sgn(2b2,i − 1)(γ − αS2,K+i) for Su,i ∈ [0, β].
The RNN distinguishes the users by changing the sign of the
linear function. For Su,i ∈ [β,∞], the codewords in phase 2
are mapped to numbers almost symmetrically along zero. In
Fig. 4(a) and 4(b), γ ≈ 2, α ≈ 4

3 , and β ≈ 1.5; in Fig. 4(c)
and 4(d), γ ≈ 5, α ≈ 1, and β ≈ 5. Based on the trained
σs = {1, 2, · · · , 15}, we noticed that γ ∈ [2, 5], α ∈ [0.5, 1.5]
and β ∈ [1.5, 7]. As σs grows, γ and β increase slowly. α is
some number varying around 1. Also, as the distribution of the
channel state becomes flatter, the linear relationship becomes
more obvious. The relationship between γ, α, β and σs is still
under investigation.

V. CONCLUSION

This paper presented a two-phase AE empowered by a
deep RNN integrating GRU and LSTM for the symmetric
F-AWGN-BC with COF. Comparisons with the state-of-the-
art codes reveal competitive BER performance in the low
SNR regime, although generalization to the high SNR regime
remains a challenge as well as higher order modulations. We
believe that this is the beginning of the investigations into
deep learning for fading BCs with feedback. Our approach
can provide potential performance improvements in terms of
reliability and interesting insight about “good” communication
schemes (i.e., power allocation and codewords construction)
in scenarios where the optimal schemes are unknown (i.e.,
F-AWGN-BC with different types of feedback signals). We
have identified that the delayed received signals are more
helpful than the delayed CSIT for the encoding process in
the proposed scheme and also observed that the codewords
constructed by the AE in phase 2 have some linear relation-
ship with respect to the Rayleigh distributed channel state.
However, there are still a great number of open problems to
be explored in the future, such as taking noisy feedback and
imperfect CSI into consideration.

REFERENCES

[1] J. Schalkwijk and T. Kailath, “A coding scheme for additive noise
channels with feedback–i: No bandwidth constraint,” IEEE Transactions
on Information Theory, vol. 12, no. 2, pp. 172–182, April 1966.

[2] J. Schalkwijk, “A coding scheme for additive noise channels with
feedback–ii: Band-limited signals,” IEEE Transactions on Information
Theory, vol. 12, no. 2, pp. 183–189, April 1966.

[3] L. Ozarow and S. Leung-Yan-Cheong, “An achievable region and outer
bound for the Gaussian broadcast channel with feedback (Corresp.),”
IEEE Transactions on Information Theory, vol. 30, no. 4, pp. 667–671,
July 1984.

[4] S. R. Bhaskaran, “Gaussian broadcast channel with feedback,” IEEE
Transactions on Information Theory, vol. 54, no. 11, pp. 5252–5257,
Nov 2008.

[5] L. V. Truong and H. Yamamoto, “Posterior matching for Gaussian
broadcast channels with feedback,” arXiv e-prints, p. arXiv:1404.2520,
Apr 2014.

[6] N. Elia, “When bode meets Shannon: control-oriented feedback com-
munication schemes,” IEEE Transactions on Automatic Control, vol. 49,
no. 9, pp. 1477–1488, 2004.

[7] S. B. Amor and M. Wigger, “Linear-feedback MAC-BC duality for
correlated BC-noises, and iterative coding,” in 2015 53rd Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton),
2015, pp. 1502–1509.

[8] S. Li, D. Tuninetti, and N. Devroye, “The fading Gaussian broadcast
channel with channel state information and output feedback,” in 2020
IEEE International Symposium on Information Theory (ISIT), 2020, pp.
1474–1479.

[9] ——, “A control-theoretic linear coding scheme for the fading Gaussian
broadcast channel with feedback,” in 2021 IEEE International Sympo-
sium on Information Theory (ISIT), 2021, pp. 1–6.

[10] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5g,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 74–80, 2014.

[11] S. Bi, R. Zhang, Z. Ding, and S. Cui, “Wireless communications in the
era of big data,” IEEE Communications Magazine, vol. 53, no. 10, pp.
190–199, 2015.

[12] T. O’Shea, T. Erpek, and T. Clancy, “Deep learning based MIMO
communications,” ArXiv, vol. abs/1707.07980, 2017.

[13] C. Nguyen, H. Dinh Thai, S. Gong, D. Niyato, P. Wang, Y.-C. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in com-
munications and networking: A survey,” 10 2018.

[14] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless
networks: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 20, pp. 2595–2621, 2018.

[15] H. Kim, Y. Jiang, S. Kannan, S. Oh, and P. Viswanath, “Deepcode:
Feedback codes via deep learning,” IEEE Journal on Selected Areas in
Information Theory, vol. 1, no. 1, pp. 194–206, 2020.

[16] W. Jiang and H. D. Schotten, “Deep learning for fading channel
prediction,” IEEE Open Journal of the Communications Society, vol. 1,
pp. 320–332, 2020.

[17] R.-F. Liao, H. Wen, J. Wu, H. Song, F. Pan, and L. Dong, “The Rayleigh
fading channel prediction via deep learning,” Wireless Communications
and Mobile Computing, vol. 2018, pp. 1–11, 07 2018.

[18] M. Goutay, F. A. Aoudia, and J. Hoydis, “Deep reinforcement learning
autoencoder with noisy feedback,” 2019.

[19] E. Stauffer, A. Wang, and N. Jindal, “Deep learning for the degraded
broadcast channel,” 2019 53rd Asilomar Conference on Signals, Sys-
tems, and Computers, pp. 1760–1763, 2019.

[20] D. Wu, M. Nekovee, and Y. Wang, “Deep learning-based autoencoder
for m-user wireless interference channel physical layer design,” IEEE
Access, vol. 8, pp. 174 679–174 691, 2020.

[21] P. Berlin and D. Tuninetti, “LDPC codes for fading Gaussian broadcast
channels,” Information Theory, IEEE Transactions on, vol. 51, pp. 2173
– 2182, 07 2005.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[23] T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brink, “On deep learning-
based channel decoding,” in 2017 51st Annual Conference on Informa-
tion Sciences and Systems (CISS), 2017, pp. 1–6.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[25] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” 2014.

[26] D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group, Eds.,
Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1: Foundations. Cambridge, MA, USA: MIT Press,
1986.

[27] J. Bergstra, R. Bardenet, B. Kégl, and Y. Bengio, “Algorithms for hyper-
parameter optimization,” 12 2011.

[28] S. Li, D. Tuninetti, and N. Devroye, “On the capacity region of the
layered packet erasure broadcast channel with feedback,” in IEEE
International Conference on Communications (ICC), May 2019, pp.
1–6.

[29] C. Jiang, Y. Chen, S. Chen, Y. Bo, W. Li, T. Wenxin, and J. Guo,
“A mixed deep recurrent neural network for mems gyroscope noise
suppressing,” Electronics, vol. 8, p. 181, 02 2019.

[30] R. Cahuantzi, X. Chen, and S. Güttel, “A comparison of lstm and gru
networks for learning symbolic sequences,” 2021.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[32] L. N. Smith, “Cyclical learning rates for training neural networks,” 2017.


