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Abstract—Deep-learned error-correcting codes have recently
been shown to match and sometimes improve upon analytically
derived codes in certain regimes. One such code, TurboAE,
mimics the structure of a Turbo code. In a recent paper, we
interpreted the encoder of TurboAE and matched it with a
BCJR decoder, creating a complete interpretation of the TurboAE
code. In this paper, we expand on that work and study various
combinations of deep-learned and interpretable encoders and
decoders with the goal of evaluating the interpretations and
identifying features of the code that benefit from deep learning.
In doing so we pursue a novel direction in Explainable AI (XAI)
research, whereby different components of a deep-learned system
can be replaced with their interpretable counterparts to better
understand aspects of the original system. The initial observations
based on a single code suggest that further similar studies for
other codes might be of interest. Our experiments on the deep-
learned TurboAE suggest the following: the nonlinear nature of
two out of three TurboAE constituent encoders does not seem to
play a role, and neither do distinct encoding functions used for the
boundary bits. We also observe that TurboAE performs poorly
if it is converted to a recursive systematic code, to the point that
it trails a randomly generated convolutional code. Further, while
TurboAE trained on the AWGN channel performs remarkably
well on the Additive T-noise channel, it is outperformed when
traditional codes use the correct channel model for decoding. A
discussion that attempts to provide some insight into these results
is included.

I. INTRODUCTION

A new path has recently surfaced in the development of
error correcting codes: use machine learning to “learn” the
encoders and/or decoders of error correcting codes [1]-[9].
While deep-learned error-correcting codes (DL-ECCs) are
fully specified by the parameters of the neural network models,
because of the large number of parameters, these deep-learned
codes are often considered black boxes in the sense that it is
not “understood” how/when they perform well or whether/if
they relate to known codes.

In our prior work [10] we considered interpreting TurboAE-
binary [1], one of the first complete DL-ECCs. We devel-
oped post-hoc interpretability techniques to analyze the deep-
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learned encoders of TurboAE codes, using influence heatmaps,
mixed integer linear programming (MILP), Fourier analysis,
and property testing. We were able to derive both exact non-
linear and approximate affine representations of the Boolean
encoding functions. We compared the learned, interpretable
encoders combined with BCJR decoders to the original black-
box code. Our focus was quantitative in nature, looking at
developing faithful interpretations. However, we did little to
evaluate our interpretations in the bigger picture of evaluating
the performance of such interpretations, which we initially
attempt here.

The problem studied in [10] and in this paper can be viewed
as a case study for Explainable AI (XAI)', the field dealing
with understanding learned black-box models like deep neural
networks, for applications in science and engineering. Moti-
vations for obtaining such an understanding of DL-ECCs are
discussed in some detail in [10].

In order to understand a black box model, the first questions
are what notion of explanation to use, and how to find the
required kind of explanation. An important next question
is what are relevant criteria for evaluating the explanations
obtained and how to evaluate the explanations according to
those criteria, see, e.g., [11]. Providing formal definitions of
these criteria, and experimental and theoretical work on them
is an active area of current research.

Explanations can either be local (explaining the output on
a fixed input) or global (explaining the function computed
by the learned model). Evaluation criteria have mostly been
studied for local explanations. Some of the basic criteria are
faithfulness of the explanations with respect to the model and
robustness with respect to perturbations of the input.

In the context of DL-ECCs, one is mainly interested in
global explanations. In [10] we found global explanations of
TurboAE encoder in the form of modified Turbo codes with
general (nonlinear) and affine constituent codes.

One can consider a channel code as a system with two
components (the encoder and the decoder) in an environment
(the channel), solving a task (communication). This is a special

IPrevious papers on DL-ECC used the term interpretability and we follow
this usage in most of the paper. In the XAI literature, it is more common to
talk about explanations instead. In the brief discussion of XAI below we use
such common terms as local and global explanations, but the remainder of
the paper will generally use “interpretations.”
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Fig. 1: The rate R = 1 (u € {0,1}'%°,xap,; € {£1}'%) classical Turbo and TurboAE encoder and decoder structures. The recursive
systematic (RCS) convolutional codes and the BCJR decoding blocks are both replaced by convolutional neural network (CNN) blocks.
Functions f;¢(-) are the constituent codes implemented as CNNs. Our interpretable codes either provide compact Boolean representations
for the learned functions f;¢ or approximate them with modified convolutional codes g, Some images adapted from [1].

case of a system with black boxes for some components,
which can then be explained by replacing (some of) those
with interpretable components.

Evaluating the quality of those explanations goes hand
in hand with trying to understand the reasons for the good
performance of the black-box system. Thus evaluating ex-
planations has the potential to be useful for the original
discipline. For DL-ECCs, exploring the role of nonlinearity,
trying to clarify the gains obtained from learning the encoder,
resp., the decoder, and studying robustness with respect to the
environment (i.e., channel noise) are all questions which have
been studied in coding theory.

In this paper we describe experiments which pair our inter-
pretable TurboAE encoders with BCJR decoders, as initially
started in our prior work [10], or with new fine-tuned (extra
training starting from TurboAE’s original parameters) deep-
learned decoders. The observations include:

e Boundary terms do not meaningfully affect the perfor-
mance.

o Non-linearities of the encoding function do not appear to
matter much for TurboAE’s performance.

« Non-systematic, non-recursive codes are learned by Tur-
boAE, as dictated by the CNN architecture. However,
systematic, recursive forms of the exact or approximated
TurboAE encoders paired with a matching BCJR decoder
outperform TurboAE.

« Robustness against changes in channel: in [1] it was
shown that the CNN decoder performs better than the
BCJR decoder on the additive T-noise channel when the
CNN is trained on the AWGN channel, and the BCJR
decoder (incorrectly) assumes AWGN statistics. However,
we observe that if we do know the channel statistics, e.g.,
that the channel is additive T-noise rather than AWGN,
we can modify BCJR accordingly and significantly im-
prove performance; as a result this interpretable decoder
outperforms TurboAE.

These tentative conclusions could be studied in other contexts.
The questions raised provide examples of the general types of
insights XAI could offer when integrating deep-learning based
results into the discipline where they are applied.

II. BACKGROUND

In this section, we briefly review relevant material from our
prior work [10].

A. TurboAE encoder

The architecture of the TurboAE encoder network [1] is
based upon a classical rate 1/3 Turbo code, with the three
constituent codes being replaced by CNN blocks, as in Fig.
1. Similarly, the TurboAE decoder architecture replaces the
iterations of the BCJR decoder by CNNs. The network is
trained in an end-to-end fashion to obtain the network param-
eters of the encoder and decoder CNNs jointly. The network
has two versions, TurboAE (with real-valued encoder outputs)
and TurboAE-binary (with Boolean encoder outputs). In this
paper, we discuss the latter, and for simplicity we drop the
“binary” suffix.

The input to the network is a sequence u of 100 bits,
and the output of each block j € {1,2,3} is a sequence
xap,; € {£1}1%. For simplicity, we omit details of power
control modules. In [10] we also ignored the ‘“boundary”
effects, i.e. the treatment of the first 2 and last 2 bits of each
block. These are discussed in detail in Section II-B.

The structure of the CNN blocks (see Fig. 2) implies that
the constituent codes of block j implement a Boolean function
fi0:{0,1}° — £1 of window 9 applied to bits i — 4 : i+ 4
of u to produce the bit i of X4 ;.
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Fig. 2: Computation of i’th output of TurboAE Encoder Blocks:
output ¢ depends only on inputs ¢ — 4 : 7 4 4. Figure taken from [10]
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B. Approximate and exact TurboAE encoding functions

In [10] we found functions g(j), Jj € {1,2,3} that either
exactly or approximately represent the TurboAE constituent
codes fj¢. Our analysis showed that the encoder functions
depend on 5 variables only (the encoder has memory 4 plus
the 1 input bit). We first determined their best (in terms
of the Hamming distance) affine approximations. In block-
3 there are four best approximations (Table I). Replacing the
constituent codes in each block with an affine approximation
one gets a modified Turbo code, containing modified convolu-
tional blocks. A modified convolutional code is nonsystematic,
nonrecursive, involving affine functions instead of linear ones,
and also including a shift, i.e., an output bit may depend on
future input bits. See [10] for more details on these terms.

Block # | Approximate expressions for output #:
1 1D ur G us @ us ®ug ®us
2 U B us P ug D us
3 Solution 1: w1 B ug P uy
Solution 2: 1@ uy @ us P ug D uy
Solution 3: 1® uq P us P ug O us
Solution 4: 1@ u; B us B ug ® ug P us
where Uy = Tj42, U2 = Ti41, U3 = Ty,
Ugy = T;—1, U5 = T;_g, T = inputs

TABLE I: Best affine approximations for TurboAE’s encoder. Block
3 has four equally good approximations.

We also determined the exact [Fo-polynomial representations
of the encoder functions f1 g, f2,9, f3,0. These are given in
Table II. The polynomials are written in a non-standard
unate form [10], allowing for negated variables, as this more
general representation turns out to be natural in this context.
Eliminating negations shows that solution 4 in Table I is the
affine part of the exact representation for block 3.

Block # | Expression for output #: € {3,4,---,98}
1 1®u ©us ®uz®ug ®us
D ﬂ2U3ﬂ4 D ulﬁQU37._L4U5
2 UL D uz D ug D us
3 U1 D ug D uyg D usus
where Ul = Tj42, U2 = Tj41, U3 = Ty,
Ugy = T;—1, U5 = T;_9, T = inputs

TABLE II: Exact expressions for TurboAE Encoder’s non-boundary
bits.

The results above as first obtained in [10], apply to bits 3-98.
The boundary bits have not been considered in [10]. In a regu-
lar non-recursive convolutional code block B : FY — FL of
length L and memory M, every output bit ¢ implements some
function g; : F)Y — Ty of the inputs «(*) in its fan-in, and if
some part of u(?) falls outside of the input block range 1 : L,
then that part can be set to constant 0 while evaluating g;, e.g.
for the bits at the boundaries of the block. All g;’s are the
same and called the generator function g for the block. This
allows the use of the function g as a convolutional filter to

Exact expressions for output #: € {1,2,99,100}
Block| i=1 i=2 =99 i=100
1 1 us 1®us 1®us 1 ® us @
U3UgUs
2 1@’&1 @'I.Lg 1@U1 @’LLg 1@U3@U5 1@’&3@“5
3 ULU3 UL Bus® | 1P us 1P ug
uz O ug D
7,L1U2'I:L3’L_L4€B
U U2Uz Uy
where Ul = Tj42, U2 = Tj41, U3 = T4, U4 = Tj—1,
Us = Tj—2, T = inputs

TABLE III: Exact expressions for TurboAE encoder’s boundary bits.

compute the output bits by appropriately 0-padding the input
block to a final length of L + M — 1.

In TurboAE however, 0-padding is not done just at the
inputs, but at the first hidden layer as well. Because of the
0-padding at the hidden layer, the g;’s are not all same. Only
g3, 94 - - - gog are the same, say g, because the 0-padding in the
hidden layer does not appear in their fan-in. g1, g2, 999, 9100
are different from the rest of the bits and are referred to as
boundary bits. We determined these boundary bit functions
to be those in Table III. Hence, there is no single generator
function that can be used as a convolutional filter for TurboAE
block. When ¢ is used as the generator with appropriate
O-padding just at the inputs, the boundary bits are not the
same as in the output of TurboAE.

Another minor technical difference between a regular con-
volutional code block, and TurboAE encoder’s blocks is the
layout of 0-padding. In a convolutional code block, all the
0-padding of width M — 1 (= 4 here) would be done at the
start of the input block, whereas in TurboAE 2-bit wide 0-
padding is done at both ends of the input. When viewed as a
convolutional code, this is equivalent to running the encoder
for 2 steps before we start transmitting, and padding 0’s once
we run out of input bits. Thus TurboAE encoder’s output has
a shift of 2-bits as compared to a regular convolutional code
block. So any generic decoding algorithms like BCJR, when
paired with TurboAE’s encoder must adapt for this shift.

C. TurboAE’s decoder

The decoder of TurboAE can be viewed as a single, large
convolutional neural network with some internal structure
incorporated to mimic iterative decoders for Turbo codes (Fig.
1). The convolutional neural network decoder structure pairs
well with the non-recursive nature of the encoder, capturing
the inductive bias that input bits should be decoded from local
information in the received transmission.

In [10], and as briefly outlined above, we obtained ex-
act non-linear and approximate affine representations / ex-
planations of the TurboAE’s constituent encoder functions,
yielding explainable encoders. However, to obtain an inter-
pretable code, one needs both an interpretable encoder and
an interpretable decoder. To do so, we paired our exact and
approximate encoders with BCJR decoders whose trellises
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are provided by the exact or approximate encoding functions.
Note that because of the different boundary functions and shift
on the encoder (see Section II-B, [10]), the BCJR decoding
algorithm needs slight modifications. Boundary functions can
be accommodated by modifying the encoder’s trellis structure
for bits 1, 2, 99, and 100. We also can modify BCIR to
handle a shifted encoder by adjusting its prior on the initial and
final states of the encoder. We consider BCJR an interpretable
decoder as it is based on a well-studied algorithm [12].

III. EMPIRICAL RESULTS

We now examine a series of questions that help evaluate
our interpretations of TurboAE?.

To compare our codes with TurboAE, we estimate BERs
on various channels w.r.t. uniformly chosen binary blocks
of length 100, and channel noise. For all encoders, we use
TurboAE’s original training interleaver only. For input mes-
sage x € F5" of length m, the channel outputs y = x + z,
and the channel noise vector z is independent and identically
distributed (iid) according to one of the distributions below
that are parameterized by a signal-to-noise ratio SN R(0?) =
—10log,q 02 for noise variance o2 € R:

o AWGN: z; is iid ~ N(0,0?);

o Additive T-distribution Noise (ATN): z; is iid ~ T'(3, 02);

T(v,0?) denotes the T-distribution with distribution pa-

rameter v and scaled to have variance o2.

We consider a series of questions by comparing a number
of empirical results between the original TurboAE encoder-
decoder pair with various combinations which pair an encoder
or a decoder as follows:

o Encoder:

— TurboAE-original: the original CNN-based encoder
and decoder of [1]

— TurboAE-exact: our exact representation of the
Boolean function as in Table II (with the boundary
functions of Table III or usually without)

— Affine: the best found affine approximations of the
encoder described in Section II-B and Table I

— TurboAE-exact or Affine turned into Recursive Sys-
tematic form (RSC), as described in Section III-C

e Decoder:

— CNN: original TurboAE-decoder from [1] fine-tuned
(extra training starting from the original TurboAE
CNN’s parameters) to match the chosen encoder.

— BCIJR decoder with a trellis matched to the encoder
and using a specific noise model (AWGN or T-noise).

A. Effect of boundary bits

While evaluating the interpreted codes we have a choice
to use an encoder with special boundary bits, or without
special boundary bits by extending the non-boundary functions
over the boundary bits as well. In this section, we evaluate

2Code for experiments at https://github.com/tripods-xai/allerton-2022. Ex-
periments were written in Python [13] and made use of TensorFlow [14],
PyTorch [15], and CommPy [16].
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Fig. 3: Performance comparison of special boundary bits in the Tur-
boAE’s exact encoder. Solid curves for CNN decoder, dashed curves
for BCJR decoder. For both decoders there is minimal difference
between with and without boundary bits in the encoder.

both variants and compare their performance. We pick the
TurboAE’s exact encoder with and without special boundary
bits, and pair them with BCJR or TurboAE’s CNN decoder.
Since the CNN decoder was tuned to the exact encoder with
special boundary bits by the training process, we fine-tuned a
different CNN decoder to the exact encoder without boundary
functions to study their impact on a CNN decoder.

We see in Figure 3 that removing the special boundary bits
from the encoder led to a negligible change in BER with
both the decoders. Thus having special boundary bits seems
of limited utility, and it appears to be the result of an inductive
bias due to the 0-padding of the hidden layer in the encoder
(see Section II-B).

From here on, since the boundary functions did not have
a significant impact, we ignore them when looking at further
questions: all new decoders are based on encoders without
boundary functions. That is, we look at performance using the
exact encoder from table II or the approximations from table
I. All CNN-based decoders are initialized with the original
TurboAE’s CNN decoder and fine-tuned to the interpretable
encoders. All BCJR decoders do not use shift so we have
comparable performance with the CNN-based decoders. Al-
though this produces subtle differences in the encoders, the
change is justified because the properties of the encoder we
want to study in the later sections are not tied to shift, unlike
our specific boundary functions.

B. Impact of non-linearities and choice of linear approxima-
tion

We look at a) the effect of the non-linearities in TurboAE’s
encoding function which is coupled with b) the impact of
the choice of the affine approximations to TurboAE’s encoder
block 3 on performance, and c) the impact of re-training the
learned decoder for the different approximate solutions.
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Turbo BER vs. SNR on AWGN Channel
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Fig. 4: Comparison of TurboAE’s nonlinear encoder with its affine
approximations. Solution 3 is the best-performing approximation and
solution 1 the worst. Each is paired with either a BCJR decoder
(dashed line) or a CNN decoder (solid line). Exact encoders’ BER
points are marked with stars. Solution 1 consistently underperforms
TurboAE, while Solution 3 consistently outperforms it. CNN decoder
consistently outperforms the BCJR decoder above SNR 0.5 when
paired with the same encoder.

Figure 4 contrasts the BER of the TurboAE exact encoder
with 3 of the 4 possible affine approximations when paired
with either a CNN or BCJR decoder. We observe that the CNN
decoder consistently outperforms the BCJR decoder above
SNR 0.5 when paired with the same encoder. We also observe
that one of the best affine approximations (solution 3) of the
TurboAE encoder outperforms the original TurboAE encoder,
both when paired with the CNN or the BCJR decoders 3. On
the other hand, another best affine approximation (solution 1)
performs worse than the original TurboAE encoder.

The results suggest that the nonlinearities are not the main
reason for the performance gains of the TurboAE code. This
also suggests that TurboAE did not find a global optimum,
and could be further improved by new training techniques.
Additional evidence that this may be the case comes from
observing that the truth table for the encoder function of block
3 is actually not balanced: it has 15 ones and 17 zeros. Finally,
without further investigation we can not say whether the code
that is further optimized will turn out to be affine or nonlinear.

C. Conversion to RSC

We saw that non-linearities do not appear to play a sig-
nificant role in the performance of TurboAE. While the
architecture of TurboAE allows for learning non-systematic
non-recursive convolutional codes and prohibits the learning
of recursive convolutional-like codes, one question to ask is
whether, as one might generally expect given the literature
[12], turning our exact or affine TurboAE encoder interpre-
tations into recursive systematic forms, paired with a BCJR
decoder, leads to better performance.

30ne might expect that solution 4, the affine part of the exact expression,
would perform best, but this turns out not to be the case.

We first address how to convert our non-systematic non-
recursive exact and approximate TurboAE encoder interpre-
tations into recursive systematic code (RSC) format. We do
this by presenting a generalized conversion from the nonre-
cursive, nonsystematic version of TurboAE’s exact encoder to
a recursive, systematic code with the same set of codewords.
First, we clarify what we mean by a generalized (potentially
non-linear) convolutional code.

Definition 1. A rate 1/n generalized convolutional code is
a tuple C = (hy,ha,...,hn,g,M). M € N is the memory,
hi,...,hy : Fg x Fé” — P9 are the encoders, and g : Fo x
F) — Fy is the feedback. A bit u € Fy and state s € F) is
encoded as (hi(u,s),ha(g(u,s),s),...,h.(g(u,s),s)), and
the next state is set to (g(u,s),s1,...,5m—1). The state is
always initialized as 0.

The following theorem establishes sufficient conditions for
converting a generalized nonrecursive convolutional code to
an RSC:

Theorem 2. Let C = (hy, ha, (u,s) — u, M) be a nonrecur-
sive rate 1/2 convolutional code of memory M. If Vs € F)!
Yu € Fy we have that hy(u,s) # hi(—u, s), then there exists
a feedback function g s.t. C' = ((u, 8) — u, ha, g, M) has the
same set of codewords as C.

This result generalizes the standard construction (see, e.g.,
[12]); the proof is omitted due to space constraints.

As somewhat expected, Figure 5 shows that converting
nonrecursive encoders to recursive ones shows dramatic im-
provement when paired with a BCJR decoder. Note, however,
that this trend is not ubiquitous. Recall that in Section III-B we
saw that some affine solutions for block 3 worsen performance.
Here we see the same effect. The recursive variant of solution
1 shows even poorer performance than its nonsystematic
counterpart.

In addition, we have compared our tested recursive codes
against two benchmark recursive codes: Turbo-155-7 and
TurboLTE described by:

o code rate R = 1/3 with generating function (1
which is denoted Turbo-155-7.
e code rate R = 1/3 with generating function

(1, L£2+22), which is denoted Turbo-LTE.

At SNR values above 1.5, both the recursive variants of the
TurboAE exact encoder and affine solution 4 paired with BCJR
encoder significantly outperform the benchmarks.

1-5—12 )
’1+.’I:+x2 )

D. Comparison with Randomly Sampled Turbo Codes

In the previous sections, we saw that approximations of Tur-
boAE’s encoder with affine encoders can produce an improve-
ment over the original code. However, is this improvement tied
to the original encoder, or are these encoders’ performance
typical of other affine encoders of the same memory? To
answer this question, we randomly select five affine turbo
codes with memory 4 and compare their performance with our
exact and approximated encoders when paired with BCJR. In
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Fig. 5: Comparison of nonrecursive encoders (solid lines) to their
RSC variants (dashed lines) and to benchmark codes (dotted lines).
All RSC variants show improvement over nonsystematic counterparts
except for affine solution 1. Both the RSC variants of the exact
encoder and affine solutions 3, 4 show improvement over benchmarks
at SNRs above 1.5.

Figure 6, we compare the random codes’ original nonsystem-
atic forms against our TurboAE-derived encoders. Then we
convert them to RSC using the transformation described in
Section III-C and compare against our TurboAE-derived RSC
encoders.

The results in Figure 6 highlight two important observations:
(1) the nonsystematic exact and approximated affine encoders
outperform all 5 of the randomly sampled encoders (2) while
the RSC variant of our encoder performs well, we were still
able to find a better performing random code. It is not sur-
prising that TurboAE’s encoder outperforms the nonsystematic
random encoders; TurboAE was trained as a nonsystematic,
nonrecursive code, so we expect its encoder to perform better
than average. On the other hand, converting a code to RSC
changes the structure of its trellis, so it does not necessarily
follow that a good nonsystematic, nonrecursive code would be
a good recursive code. We already saw in figures 4 and 5 that
solution 3 was best out of the nonsystematic approximations
while solution 4 became best when converted to recursive
codes. Comparing with the benchmarks, these results suggest
that the improvement of our RSCs over the benchmarks may
be a result of increased memory; Turbo-155-7 uses memory 2
and TurboLTE uses memory 3. On the other hand, comparing
with the random RSCs, the results also suggest that we may
be able to learn better Turbo codes by training an RSC-like
code instead. We leave this for future work.

E. Robustness to Channel

We now investigate the observation made in [1] that the
learned encoder-decoder TurboAE pair appears more robust
to incorrect channel statistics. That is, TurboAE trained
in AWGN appears to outperform existing codes employing
AWAGN statistics on other channels. We explore this by com-
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Fig. 6: Left: Comparison of 5 random affine Turbo codes (dotted)
with our exact encoder and the best affine solutions 3, 4 (solid).
Exact and affine encoders outperform all random codes. Right:
Comparison of random codes converted to RSC (dotted) with exact’s
and affine solutions’ RSC variants (solid) and benchmarks (dotted).
Our encoders are no longer the best; random code 3 shows significant
improvement over both our RSCs and benchmarks.

paring the performance of various codes over the Additive-T-
noise channel first presented in [1].

We first reproduce the results presented in [1], where all
BCJR decoded codes assume (incorrectly) that the channel
is AWGN when computing symbol transition probabilities.
We also benchmark TurboAE without any fine-tuning to the
particular channel used. As seen in Figure 7, even without fine-
tuning TurboAE shows significant improvement over BCJR.
Since TurboAE’s decoder also performed competitively when
compared against BCJR in Figure 4, as far as we can tell,
TurboAE is not sacrificing AWGN channel performance for
robustness.

On the other hand, we also compare with a BCJR decoder
that correctly assumes the channel is Additive-T when comput-
ing the symbol transition probabilities. In Figure 8 we see, as
expected, that correctly tuned BCJR outperforms TurboAE. In
other words, TurboAE is more robust than the BCJR decoder
if one assumes that the decoder can not be adapted to the
underlying channel statistics. However, given the information
about channel statistics (see also [17]), the BCJR decoder
can directly use it, and as our plots show, will significantly
outperform the CNN decoder (even if the latter is more robust).
Note that the CNN decoder needs to be retrained if the channel
model changes, so the channel information, when available,
cannot be as readily used to improve its performance.

IV. DISCUSSION

Our experiments elucidate various subtleties regarding the
question of whether the encoder or the decoder is responsible
for the performance. On the one hand, simply replacing
the CNN decoder with a BCJR decoder as in Fig. 3 and
Fig. 4 demonstrates that fine-tuned learned decoders outper-
forms their BCJR counterpart pairwise for the exact same
encoders. However, our affine interpretations of the encoder
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Fig. 7: Comparison of codes transmitted over the ATN channel with
(1) a BCJR decoder using (incorrect) AWGN statistics (dashed lines),
(2) TurboAE’s original CNN encoder and decoder, no fine-tuning
(solid line) and (3) two benchmarks using AWGN statistics (dotted).
TurboAE shows significant robustness over all BCJR codes that use

AWGN statistics.
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Fig. 8: Comparison of codes transmitted over the ATN channel with
(1) TurboAE’s original CNN encoder and decoder, no fine-tuning
(solid line), (2) a BCJR decoder using correct Additive-T statistics
(dashed lines) and (3) two benchmarks using ATN statistics (dotted).
There is still a significant gap between TurboAE and BCJR when
BCIJR uses correct ATN statistics.

have remarkably good performance: these non-systematic non-
recursive codes (affine solution 3 paired with BCJR) perform
similar to the benchmark RSC Turbo 155-7 (see Fig. 5), with
the RSC version of our affine approximate solution 4 out-
performing all benchmarks. An interesting further experiment
would be to compare the RSC affine Solution 4 encoder paired
with the BCJR decoder versus with a retrained CNN decoder.
The results suggest that TurboAE’s encoder (including its non-
linearities) is not responsible for TurboAE’s performance, and
that its decoder is making up for the non-systematic non-
recursive nature of the encoder, which is a result of the choice
of the learned architecture.

Another important question is whether simultaneously op-
timizing the encoder and the decoder leads to a better per-
forming code than when the two are designed independently.
Most DL-ECCs are trained by optimizing the cross-entropy
(CE) with the idea that this will also minimize the BER*. We
thus next try to gain further insight into the question above by
focusing on the CE.

Suppose we start with a random variable U € F% sampled
uniformly that is encoded via f : F5 — R™. The receiver
receives a random variable Y € R™ (for n = k/R for
rate R) after channel noise has been applied. Our goal is to
find our encoder f paired with a soft decoder g : R™" —
[0, 1]* that minimizes the average binary cross entropy of the
decoded bits. That is, we want to minimize BCE;(g) =
—+ 3 Elly,=1log g(Y)i + 1u,=olog(1 — g(Y);)]. The
binary cross-entropy admits a decomposition in terms of KL-
divergence and binary (conditional) entropy (e.g. [19]), as

BCE(g

k
Z (Ui]Y),

where H(-|-) is the conditional entropy function, and Dy, (+||-)
is the Kullback-Leibler Divergence. Using Gibb’s Inequality,
we see the first term is minimized when ¢(Y); = P[U; = 1|Y].
The second term does not depend on g. Indeed, in a typical,
supervised learning binary classification problem, we would
treat H(U;|Y") as a constant. However, in our case, Y depends
on the encoder f. Since for any encoder, we can express its
optimal soft decoder as P[U; = 1]Y] (and the minimal KL
divergence is 0), this tells us the optimal (from a machine-
learning perspective minimizing CE) encoder-decoder pair is
really determined by an encoder that minimizes H(U;|Y).

In the training of TurboAE [1] the authors note that al-
ternating the training of the encoder for fixed decoder and
vice versa helps the deep-learning algorithm converge. This
can be related to the above decomposition in the following
sense: perhaps it is “easier” for the optimization algorithm
which minimizes the sum of two components to minimize
one component at a time, and alternate between them. This is
what holding the encoder (or decoder) fixed and optimizing /
learning the parameters of the others does.

This decomposition further suggests that the design of the
encoder and decoder, in a deep-learning setting under CE, can
be decoupled provided a maximum likelihood (ML) decoder
can be designed, echoing somewhat what we know from
coding theory (but cannot always implement as it is known
that finding the ML decoder is in general NP-hard). One
can further speculate that deep-learned decoders minimizing
the CE try to find the ML solution, which is backed up by
recent results such as [20], where Gaussian-like constellations
based on the Golden ratio, random Gaussian codes, and a
deep-learning decoder was learned and shown empirically to

w\»—'

)
k
Z [DrL(PU:]Y][|g(Y

?’r\)—‘

4There have been attempts to show this formally [18] but it appears that
this is not true without additional assumptions.
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yield near-maximum-likelihood (ML) performance for small
constellations and blocklengths. This suggests that a worth-
while further direction would be to explore optimizing the
encoder separately to minimize this entropy, and the decoder
separately once the encoder has settled and investigate whether
this achieves close to ML performance.

V. CONCLUSIONS

We presented numerous refinements of our initial interpre-
tations in [10]. Many interesting observations can be made,
among others that boundary terms appear to not impact
performance, non-linearity does not appear to play a role in
performance of TurboAE, TurboAE seems to have learned
a good non-systematic code but recursive systematic codes
with BCJR decoders outperform the original TurboAE (binary
version), and any robustness against channel statistics should
also consider the possibility of adapting the decoder if that
information is known.

We have studied a single DL-ECC, and similar experiments
for other codes and communication scenarios would also be
of interest. The general questions involved, such as the role
of non-linearity and robustness with respect to channel noise,
are important questions for coding theory and communication.
Thus findings along these lines could lead “back to science”
from interpretability, as discussed briefly in the introduction.

Combining channels and deep-learned encoders and de-
coders has been discussed earlier [1]. In this paper we used
this approach in a cut-and-paste manner with interpretable
encoders and decoders to get information about both deep
learning and coding theory. A similar approach could be used
to try to understand systems with interpretable components.
This would provide one possible direction to use interpretabil-
ity for addressing the challenges posed by the black box nature
of machine learning methods.
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