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Abstract—Arbiter Physically Unclonable Functions (APUFs) are
low-cost hardware security primitives that may serve as unique
digital fingerprints for ICs. To fulfill this role, it is critical for
manufacturers to ensure that a batch of PUFs coming off the
same design and production line have different truth tables, and
uniqueness / inter-PUF-distance metrics have been defined to
measure this. This paper points out that a widely-used uniqueness
metric fails to capture some special cases, which we remedy
by proposing a modified uniqueness metric. We then look at
two fundamental APUF-native production line fault models that
severely affect uniqueness: the µ (abnormal mean of a delay
difference element) and σ (abnormal variance of a delay difference
element) faults. We propose test and diagnosis methods aimed at
these two APUF production line faults, and show that these low-
cost techniques can efficiently and effectively detect such faults,
and pinpoint the element of abnormality, without the (costly) need
to directly measure the uniqueness metric of a PUF batch.

Index Terms—arbiter PUF, arbiter PUF faults, testing, diagnosis

I. INTRODUCTION

PUFs (Physically Unclonable Functions) are promising low-
cost hardware security primitives that exploit manufacturing
randomness to generate unique digital fingerprints for device
authentication [1]–[3]. In an APUF (Arbiter based PUF), a
series of track pairs are designed to be of equal delay, but due to
manufacturing randomness, each pair of tracks differ slightly in
their delay values. A binary input, or “challenge” c ∈ {0, 1}n,
decides how two racing paths (consisting of consecutive, dis-
joint delay tracks) are formed, and fed into an arbiter. The
output is a binary “response” R(c) ∈ {±1} that depends on
which racing path arrives first. For each manufactured APUF
instance, it results in a hopefully unique truth table that consists
of 2n challenge-response pairs (CRPs),

(
c, R(c)

)
. APUF is

a “strong” PUF that offers CRPs exponential in the number
of delay elements, served as a basic building block for more
complex strong PUFs.
Contributions “Uniqueness” is a widely used metric for a
batch of PUFs, defined as in e.g. [4, Eq (4)] (see Definition
7 later) to evaluate how similar their truth-tables are [5]–[9].
However, as we will see, it fails to capture some intuitive
notions of uniqueness. This motivates us to: 1) define a vari-
ation of the uniqueness metric which rectifies this. We then
2) evaluate the impact of two APUF-specific manufacturing
faults, the µ-fault, and the σ-fault, introduced in [9], on this
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Fig. 1: [9] APUF with challenge bits selecting the parallel
(ti, ui) or crossed (ri, si) tracks to form two racing paths. The
response is the sign of the accumulated delay difference ∆n(c).

uniqueness. In [9] the µ-fault was shown to have a great impact
on the (old) uniqueness, while the σ-fault, surprisingly, did not.
In this paper, we point out that a σ-fault does have an impact
on the newly defined uniqueness. 3) Finally, we propose a test
flow for testing and diagnosing batches of PUFs for these two
production line faults that affect the (new) uniqueness. The tests
are low-cost and efficient: only a few challenge bits are required
for high true positive rates.

The proposed tests differ markedly from the standard and
straightforward approach which directly measures the unique-
ness metric of a PUF batch. Such measurement requires sig-
nificantly more computation and does not provide insights into
fault types and locations. Our test flow starts with a desired
uniqueness level, combined with offline simulations will allow
us to carefully select thresholds for the proposed algorithms.
The test algorithms will decide efficiently whether an APUF
batch is good, with a µ- or σ-fault. Then, our diagnosis
algorithms will pinpoint the fault location accurately, for either
µ- or σ- faults.

II. PRELIMINARIES

A. Arbiter PUF

The architecture of the APUF is illustrated in Fig. 1. The
input of an APUF is a binary vector c ∈ {0, 1}n, called a
challenge. Two racing signals (red and blue) traverse an n-stage
path. A race resolution arbiter compares which signal arrives
first and produces the output, a response R(c) ∈ {±1}. The
challenge c determines which of 2n paths is picked: the signals
traverse via the “parallel” tracks of delays (ti, ui) if ci = 0, or
the “crossed” tracks (ri, si) if ci = 1. The response is +1 (−1)
if the upper (lower) entrance to the arbiter arrives first.

Since the response relies only on which signal arrives first, it
depends on the delay difference at each stage i, denoted as delta
elements, δ(0)i := ti−ui (selected if ci = 0) and δ(1)i := ri−si



Fig. 2: Target set example for a 4-stage APUF.

(selected if ci = 1), or δ(ci)i for short. The response R(c)
then can be represented as the sign of the accumulated delay
difference at the final stage, ∆n(c), as

R(c) = sign
(
∆n(c)

)
∈ {±1}, (1)

where ∆n(c) is computed recursively for i ∈ [1, n], ∆0 = 0:

∆i(c) =

{
+∆i−1(c) + δ

(0)
i , when ci = 0

−∆i−1(c) + δ
(1)
i , when ci = 1

(2)

and ∆i(c) is the accumulated delay difference after stage i. By
expanding (2), ∆n(c) can also be represented as the summation
of δs with different signs: ∆n(c) =

∑n−1
i=1 ai(c)δ

(ci)
i + δ

(cn)
n ,

where ai(c) = (−1)
∑n

i+1 ci ∈ {±1} is the sign of δ(ci)i in
∆n(c).

B. Target set

We adopt the definition of target set from [9] as follows:
Definition 1 (target set): A target set C(x)i,+ (or C(x)i,−) with

x ∈ {0, 1}, i ∈ [1, n] contains all n-bit challenges preserving
(or reversing) the sign of δ(x)i , which may be derived from (2):

C(x)i,+ := {challenges with + δ
(x)
i selected in ∆n}

=
{
c ∈ {0, 1}n : ci = x, ci+1 + · · ·+ cn is even

}
,

C(x)i,− := {challenges with − δ(x)i selected in ∆n}
=
{
c ∈ {0, 1}n : ci = x, ci+1 + · · ·+ cn is odd

}
.

Fig. 2 shows an example: concerning δ(0)2 and δ(1)2 , the first
two challenges belong to the target set C(0)2,−, since δ(0)2 has a
negative sign in ∆n(c). The last challenge is in C(1)2,+, since δ(1)2

has positive sign in ∆n(c).

C. Response matrix

Next, as a tool for visualizing faults in a batch of APUFs,
we propose the response matrix, defined as:

Definition 2 (response matrix): The response matrix for a
set of APUF instances, A of size M , and a set of challenges,
C of size N , is defined as the M ×N matrix:

R(A, C) :=


R1(c1) R1(c2) . . . R1(cN )
R2(c1) R2(c2) . . . R2(cN )

...
...

. . .
...

RM (c1) RM (c2) . . . RM (cN )


M×N

=

[
R
(
A, {c1}

)
R
(
A, {c2}

)
. . . R

(
A, {cN}

)]
,

where Ri(cj) is the response of APUF Ai to challenge cj .

D. Production line faults

We first present two definitions of faulty production lines
from [9], as the most relevant APUF-native faults that will
affect APUF qualities.

In a good production line, all δ elements are distributed as
N (0, σ2); a µ-fault production line fault corresponds to a fault
in the mean of a δ element (non-zero mean), while a σ-fault
corresponds to a fault on a manufactured δ element’s variance
(variance larger than the targeted σ2). These faults result from
unbalanced design from EDA tools, or problematic process
variation in the manufacturing process, leading to abnormal
individual δ-elements which are key components of the APUF
and the random elements that yield the unique PUF properties.

We consider a single δ element fault as the basic scenario to
establish the analysis and test / diagnosis methodologies.

Definition 3: (ideal assumption) An APUF batch is defined
as good if every δ element is generated with standard normal
distribution, i.e.

δ
(x)
i ∼ N (0, σ2), ∀i ∈ {1, · · · , n}, x ∈ {0, 1}.

Definition 4: (µ-fault) An APUF batch suffers from a µ-fault
if there exists a δ element with non-zero mean distribution, i.e.
for some K 6= 0,

∃i ∈ {1, · · · , n}, x ∈ {0, 1} : δ
(x)
i ∼ N (Kσ, σ2).

Definition 5: (σ-fault) An APUF batch suffers from a σ-
fault if there exists a δ element with a large variance, i.e. for
some L > 1,

∃i ∈ {1, · · · , n}, x ∈ {0, 1} : δ
(x)
i ∼ N

(
0, (Lσ)2

)
.

Definition 6: (fault intensities) In Definition 4 and 5, the real
numbers K and L, are called fault intensities, with larger values
denoting larger deviation away from the ideal assumption.

III. THE PROBLEMATIC UNIQUENESS METRIC

We now consider one of the most important PUF metrics,
uniqueness, which is essential for PUFs as hardware primitives
for authentication purposes. Intuitively, a PUF batch is ideal
in uniqueness if, when we pick any 2 PUFs, their truth tables
differ in half. Consider the example shown on the left of Table
I: the uniqueness of batch A (PUFs 1,2,3,4) is ideal, i.e. the
responses of every two PUFs differ in half.

Researchers have tried to quantify this intuitive notion in
different ways [4], [10]–[12]. One of these is as a re-scaling
/ normalization of the “inter-PUF distance” or expected Ham-
ming distance (HD) between responses (ideally 0.5), defined as
Pinter in [4, Equation (3)]. Note that the true uniqueness profile
of a PUF should be captured by the distribution of the HD over
all PUF pairs (the randomness) over all challenges. How to fully
characterize it for subsets of challenges and under non-ideal
conditions is challenging. Hence, the simpler single-number
metrics or statistics such as the most widely-used uniqueness
metric of [4, Equation (4)] is adopted, defined in 7 below.

Definition 7: (original uniqueness) The original uniqueness,
Uo(A, C) of a given PUF setA over a challenge set C, is defined
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Fig. 3: Response matrices (each is 1000 64-stage APUFs
×1000 challenges) of three batches: δ(x)i ∼ N (0, 1) (left),
µ-fault with δ

(0)
40 ∼ N (20, 1) (middle), and σ-fault with

δ
(0)
40 ∼ N (0, 400) (right). Bottom plots reordered with APUF

rows according to the values of the abnormal δ(0)40 , challenge
columns according to the target sets of the abnormal δ(0)40 .

as the expectation of the single pair Hamming distance (HD)
between two PUF instances in A as:

Uo(A, C) := 1− |2Pinter − 1|, (3)

where the “inter-PUF distance” is the expected normalized HD
of all the PUF pairs:

Pinter := E

(
2

(M − 1)M

M−1∑
i=1

M∑
j=i+1

HDij(C)
N

)
,

M is the number of PUFs in the PUF set A, N is the number
of challenges in the challenge set C, HDij(C) denotes the HD
between the responses of PUF i and j to all challenges in C,
and E is the expectation.

This definition has two problems. First, consider the example
of batch B shown in Table I: PUF 6, 7, 8 have identical
responses, while PUF 5 has complementary ones, which in-
tuitively is far from ideal in uniqueness. However, according
to the above definition Uo, batch B achieves ideal uniqueness,
as the complementary pairs “cancel” out the identical pairs to
yield a final average of perfect HD (0.5). Secondly, according
to this definition, [9] showed that µ-fault production lines affect
Pinter (and hence its re-scaling, the uniqueness), while σ-fault
production lines, surprisingly, do not affect it (same for the
uniqueness).

batch A R(c1) R(c2) R(c3) R(c4) batch B R(c1) R(c2) R(c3) R(c4)
PUF 1 +1 +1 +1 +1 PUF 5 +1 -1 -1 +1
PUF 2 +1 -1 +1 -1 PUF 6 -1 +1 +1 -1
PUF 3 +1 +1 -1 -1 PUF 7 -1 +1 +1 -1
PUF 4 +1 -1 -1 +1 PUF 8 -1 +1 +1 -1

TABLE I: Example of 2 PUF batches: batch A (1,2,3,4)
presents ideal uniqueness: i.e., any pair’s HD differ in half;
batch B (5,6,7,8) obviously is not ideal in uniqueness, as three
(6, 7, 8) are identical. The widely-used metric Uo in Def. 7 fails
to discern this and treats both A and B as ideal in uniqueness.

Fig. 4: Impact of µ- and σ- faults on uniqueness via Um.

However, it is clear that both µ- and σ- faults affect the
uniqueness of a batch of APUFs. To see this, we now plot
the response matrices of µ- and σ- faults in Fig. 3. At first,
the σ-fault’s response matrix on the top right looks similar to
the good batch on the top left. However, after reordering the
matrices according to the target sets that pick the abnormal δ(0)40

element, and then further sorting them according to the values
of the abnormal δ(0)40 , we observe that many of the APUFs
generated from the σ-fault production line have very similar
responses to the challenges that pick the abnormal δ(0)40 . These
APUFs are not unique, and this shows that Uo, defined by
Pinter and equation (3) fails to capture the true impact of a
σ-fault on uniqueness.

The other example provided in batch B of Table I may easily
be shown to also yield a Pinter = 0.5, and hence Uo(A, C) =
1, both of which are ideal. Again, in batch B of Table I, three of
the PUFs have identical truth tables, and the fourth is simply the
opposite. Clearly, the uniqueness metric is not properly defined.

IV. A MODIFIED UNIQUENESS METRIC

In this section, we propose a “modified” uniqueness that
captures the impact of both µ and σ production faults and
resolves the issue seen in batch B of Table I, where the
normalized HD of every PUF pair “cancel” out when averaged:
half yield a 0 and half a 1. To avoid this, we propose to use
the absolute value of the deviation of the normalized HD from
the ideal 0.5, as:

Definition 8: (modified uniqueness) The modified unique-
ness, Um(A, C) of given PUF set A consists of M PUFs and
challenge set C consists of N challenges is defined as

Um(A, C) := 1− 2Dev,

where the normalized deviation from the ideal inter-PUF Ham-
ming distance (0.5) is defined as

Dev :=
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

∣∣∣∣∣HDij(C)
N

− 0.5

∣∣∣∣∣.
Remark: Under this definition, the uniqueness lies in the

range [0, 1], with 0 being the worst and 1 the ideal value.
This new uniqueness metric solves the issue seen in the old
definition’s uniqueness of Table I.

Fig. 4 shows (on the left sub-plot) how the modified unique-
ness Um(A, C) from Definition 8 captures the impact of both



µ- and σ-fault production lines on uniqueness: indeed, both
µ- and σ- faults affect uniqueness (contrary to the previous
understanding according to the old uniqueness metric Uo(A, C),
where σ-fault does not affect uniqueness). Quantitatively, as the
fault intensity (K,L) increases, the uniqueness worsens, with
the µ-fault having a more severe impact than the σ-fault. We
also see that, under a random challenge set, when the fault
intensity (measured by K,L values) is greater than around 5,
both µ-faults and σ-faults start to have a marked impact on
Um(A, C), and the worst uniqueness tends to 0.5.

The sub-plot on the right of Fig. 4 shows how each man-
ufacturer can identify the acceptable fault intensities (K,L)
according to their desired acceptable level of uniqueness. As
such, we can define a good PUF batch as one where all PUFs
that either 1) satisfy Definition 3, or 2) it suffers from a µ-fault
or σ-fault with small enough fault intensities to guarantee a
uniqueness above a desired value, say larger than Ud, obtained
from Fig. 4. It is important to “catch” production line faults
whose K,L give undesirable uniqueness values, discussed next.

V. TEST AND DIAGNOSIS METHODOLOGIES

As seen in the previous sections, both µ- and σ- faults
affect the uniqueness of an APUF batch. To overcome the
challenge that such faults are analogue and statistical in nature,
we propose a set of efficient methodologies that can precisely
test and diagnose them.

Note that one could measure uniqueness directly (using
Um(A, C) for example), and judge whether a PUF batch meets
a desired level or not. However, this is a costly approach –
requiring finding the HD over all challenges (size N ) of all
pairs of PUFs in a batch O(M2×N), and does not identify the
root cause (µ- vs. σ- fault), nor diagnose the fault location(s).
Our proposed test methods use at most 4 challenges over the
M PUFs in a batch (O(M)) to identify the fault type, and the
diagnosis methods (O(n×M ×N ) where n is the number of
stages for the APUFs) can pinpoint which δ has the specific
fault.

The test flow shown in Fig. 5 consists of two phases: pre-
processing and test / diagnosis. Given the response matrix of
a set of APUFs from a production line, a desired uniqueness
lower bound, and tradeoff preference for True Positive Ratio vs.
False Positive Ratio (TPR, FPR), the pre-processing stage uses
a database of simulation results such as the plot in Fig. 4 to

Algorithm 1: µ-fault test with 2 challenges
Input: R(A, {c, c̄}) of size M × 2, γ1 ∈ [0, 1]
Output: µ-fault existence
// good batch has both s1, s2 → 0

s1 ←
∑M

i=1Ri(c)/M
s2 ←

∑M
i=1Ri(c̄)/M

// either c or c̄ must select the abnormal δ
affected by µ-fault, if exists

s = max(|s1|, |s2|) /* bad batch has s→ 1 */
if s > γ1 then

report µ-fault exists
end

Generate 
thresholds: 

γ1, γ2, γ3, γ4 
for Algorithm 

1, 2, 3, 4

Input: 
response matrix, 

desired uniqueness,
TPR vs. FPR 

tradeoff preference

Algorithm 1:
μ- fault 

detected?

Algorithm 2:
σ- fault 

detected?

Output: 
good 
batch

Algorithm 3:
μ- fault 

diagnosis

Algorithm 4:
σ- fault 

diagnosis

no

yes noyes

Output: 
μ- fault 

location

Output: 
σ- fault 

location

Pre- processing Test and Diagnosis 

Database of simulation results:
Lookup Tables for Uniqueness vs K, L

ROC curves for K, L vs. γ

Fig. 5: Overall flow: test, diagnosis of faulty APUF batches.

obtain the corresponding fault intensities (Kd and Ld), and uses
them to find out various thresholds as described in subsection
V-C. Then, 4 algorithms are used for test and diagnosis for µ-
and σ-fault accordingly.
A. Test methodologies: testing µ- or σ- faults

We propose two low-cost tests, motivated by the response
matrices in Fig. 3, with two and four challenges respectively
taken over an APUF batch.

1) Algorithm 1 (µ-fault test): It is easy to see that, given
a single challenge c, a good APUF batch of size M tends to
have half of the APUFs with positive responses and another
half with negative responses, which implies

∑M
i=1Ri(c) = 0.

With a µ-fault, if the challenge c picks the abnormal δ, then
the number of APUFs with positive response deviates from half,
which means

∑M
i=1Ri(c) → ±M . Thus, the ratio of APUFs

with positive response can be used to indicate µ-fault with some
given threshold γ1 ∈ [0, 1]:∣∣∣∣∣

M∑
i=1

Ri(c)/M

∣∣∣∣∣ > γ1: decide µ-fault.

To design a µ-fault test without knowing which δ is at
fault, as is shown in Algorithm 1, at least two challenges c, c̄
are needed, where c̄ is the complement of c. This way, any
abnormal δ will be picked by either c or c̄, for some γ1.

2) Algorithm 2 (σ-fault test): Given the response matrix of
a set of M APUFs (A) and two arbitrarily chosen challenges
(c, c′), a good APUF batch tends to have half the APUFs
producing the same response for c and c′. This implies the
inner product of R

(
A, {c}

)
and R

(
A, {c′}

)
tends to be 0.

Algorithm 2: σ-fault test with 4 challenges
Input: R(A, {c, c̄, e, ē}) of size M × 4, γ2 ∈ [0, 1]
Output: σ-fault existence
// 1 out of these 4 pairs must both pick the

abnormal δ affected by the σ-fault, if exists

s1 ← R
(
A, {c}

)T
R
(
A, {e}

)
/M

s2 ← R
(
A, {c}

)T
R
(
A, {ē}

)
/M

s3 ← R
(
A, {c̄}

)T
R
(
A, {e}

)
/M

s4 ← R
(
A, {c̄}

)T
R
(
A, {ē}

)
/M

// good batch has all 4 inner products → 0

s = max(|s1|, |s2|, |s3|, |s4|) /* bad batch has s→ 1 */
if s > γ2 then

report σ-fault exists
end



Algorithm 3: µ-fault diagnosis
Input: R(A, C) of size M ×N , γ3 ∈ [0, 1]
Output: candidate set of δs for µ-fault
D ← ∅
for each δ(x)i do

// a good δ
(x)
i has both s1 and s2 → 0.5

s1 ← ratio of +1 in R(A, C(x)i,+)

s2 ← ratio of −1 in R(A, C(x)i,−)

s←
∣∣s1 − s2∣∣ /* a bad δ

(x)
i has s→ 1 */

if s > γ3 then
D ← D ∪ {δ(x)i }

end
end
report D /* candidate set δs for µ-fault */

With a σ-fault, when both c and c′ pick the abnormal δ, then
the number of APUFs producing the same response for the two
challenges will deviate from half of M . Specifically, the inner
product of R

(
A, {c}

)
and R

(
A, {c′}

)
tends to +M (or −M )

if c, c′ pick the abnormal δ with the same (or opposite) sign
in ∆n. This presents a way to indicate the existence of σ-fault
with some given threshold γ2 ∈ [0, 1]:

|R
(
A, {c}

)T
R
(
A, {c′}

)
/M | > γ2: decide σ-fault.

To design the σ-fault test without knowing which δ is at
fault, we must somehow obtain 2 challenges that both pick the
abnormal δ. This is achieved by carefully selecting 4 challenges
in Algorithm 2. Here, we first randomly choose two different
challenges c, e, and then find their complements: c̄ and ē. For
an APUF batch with a σ-fault at any δ

(x)
i , it can be shown

that at least 2 of these 4 challenges (selected as complementary
pairs, which is crucial) will guarantee to both pick the abnormal
δ
(x)
i . The responses of all APUFs to these two challenges tend

to be identical or completely different and hence the inner
product of the responses of this challenge pair tends to ±M .

B. Diagnosis methodologies: pinpointing the faulty δ

The proposed diagnosis algorithms go through each of the
δ
(x)
i to test whether it is a fault candidate. Fig. 3 demonstrates

clear patterns when the columns of the response matrix are
organized by target sets: 1) the responses of a good APUF
batch tend to be unbiased (half positive and half negative) over
any target set; 2) with a µ-fault, within the target sets of the
abnormal δ, the responses tend to be the same overall APUFs
(thus showing a “striped” pattern); 3) with a σ-fault, within the
target sets of the abnormal δ element, the responses follow a
“checkered” pattern. This observation motivates the diagnosis
algorithms.

1) Algorithm 3 (µ-fault diagnosis): With a µ-fault, under
the target set columns of the abnormal δ, all the APUFs tend
to have similar responses. Thus Algorithm 3 checks how much
the ratio of +1 differs from that of −1 in those responses to
identify such a syndrome, iteratively for each δ as a candidate.

2) Algorithm 4 (σ-fault diagnosis): With a σ-fault,
the affected δ element has a larger variance, so in many
APUFs it will be large and positive and in equally many

Algorithm 4: σ-fault diagnosis
Input: R(A, C) of size M ×N , γ4 ∈ [0, 1]
Output: candidate set δs for σ-fault
D ← ∅
for each δ(x)i do

s1 ← 0, s2 ← 0
for each row j ∈ A do

s1+ =
∣∣∑

c∈C(x)
i,+

Rj(c)
∣∣

s2+ =
∣∣∑

c∈C(x)
i,−

Rj(c)
∣∣

end
// a good δ

(x)
i has both s1 and s2 → 0

s = (s1 + s2)/(M ×N) /* a bad δ
(x)
i has s→ 1 */

if s > γ4 then
D ← D ∪ {δ(x)i }

end
end
report D /* candidate δs for σ-fault */

other APUFs it will be large and negative. As such, for
the pair of target sets of this δ elements, half the APUFs
will produce positive responses under one target set (say
C(x)i,+) and a negative under the other one (say C(x)i,−), and
half the APUFs will have the opposite pattern, leading to
the “black-white, white-black” checkered pattern. Such a
checkered pattern in the target sets can be captured by(∑M

j=1

∣∣∣∑c∈C(x)
i,+
Ri(c)

∣∣∣+
∑M

j=1

∣∣∣∑c∈C(x)
i,−

Ri(c)
∣∣∣) /(MN).

If this score is larger than a threshold γ4, then the corresponding
δ
(x)
i suffers from σ-fault. This is shown in Algorithm 4.

C. Threshold selection according to desired fault intensities
For all 4 algorithms, the proper thresholds (γ1, γ2, γ3, γ4)

can be selected from offline simulation results. Starting from
a desired lower bound of uniqueness Ud, one can find the
corresponding desired upper bound of fault intensities Kd and
Ld from Fig. 4. To further obtain thresholds we need Receiver-
Operating-Characteristics (ROC) curves to consider tradeoffs of
True Positive Rates (TPR) versus False Positive Rates (FPR)
of a particular test algorithm. Here, TPR is defined as TP / (TP
+ FN), and FPR as FP / (FP + TN), for TP = # True Positives,
TN = # True Negatives, FP = # False Positives, and FN = #
False Negatives. Ideally, TPR = 1 and FPR = 0.

An example of TP would be a µ-fault APUF batch with
intensity Kreal = 10, detected as faulty with a desired fault
intensity Kd = 5; an example of FP would be a µ-fault APUF
batch with intensity Kreal = 10, detected as faulty with a
desired fault intensity Kd = 20.

Fig. 6 show two examples of ROC curves for µ- and σ- fault
test and diagnosis, under different fault intensities: the curves
are drawn out by varying the threshold γs. The thresholds can
be selected by looking at these ROC curves of the associated
tests, depending on the desired (TPR, FPR) tradeoff; a general
rule of thumb would be to pick one nearest the upper left-hand
corner, where TPR = 1 and FPR = 0.

VI. SIMULATION RESULTS

We now present Monte-Carlo simulation results of the pro-
posed test and diagnosis algorithms in Table II. Results are



Fig. 6: Threshold γ selection can be done via ROC curves
for (top) testing and (bottom) diagnosing based on the tradeoff
between TPR and FPR.

evaluated based on TPR (shown in bold fonts in black) and FPR
(shown in red color), under different desired fault intensities
(Kd, Ld) and real fault intensities (Kreal, Lreal). The results are
obtained as averages over 1000 or 100 runs (number of batches)
respectively. Note that the thresholds used in this section are
different from those shown in Fig. 6.

A. Test results for Algorithm 1 and 2

Consider a batch of 100 64-stage APUFs from an unknown
production line. For a given desired uniqueness Ud, Algorithm
1 uses 2 challenges to detect whether this batch suffers from
µ-fault (with Um < Ud) or not (good or suffers from a σ-fault).
Algorithm 2, on the other hand, uses 4 challenges to determine
whether a σ-fault exists (i.e. Lreal > Ld generated based on
Ud or not).

Overall, Table II shows the effectiveness in Algorithms 1 and
2: with only a couple of challenges, we can precisely detect
faulty production lines when the fault density is high (Kreal ≥
5, Lreal ≥ 10). As expected, both TPR and FPR increase as
the real fault intensity Kreal and Lreal become larger; both
TPR and FPR decrease as the desired fault intensity Kd and
Ld increase. This illustrates the tradeoff between TPR and FPR
that needs to be considered in the test process. In general, the
effectiveness for σ-faults is lower than that of µ-faults. This
is because for σ-faults, the mean is still zero, but the variance
is larger, which intuitively is harder to notice, at least with a
batch of 100 APUF samples.

B. Diagnosis results for Algorithm 3 and 4

For diagnosis, we assume the given production line of 64-
stage APUFs suffers from µ- (σ-) fault with a fault intensity
no smaller than the desired fault intensity, i.e. Kreal ≥ Kd

TABLE II: TPR (bold) and FPR (red) for µ- and σ-fault test
and diagnosis results.

test diagnosis
Kd good with N challenges
or µ-fault with Kreal σ-fault with Lreal µ σ
Ld 2 5 10 20 2 5 10 20 100 50 100 200
2 0.72 0.99 1 1 0.65 0.85 0.99 1 0.02 1 1 1
5 0.23 0.98 1 1 0.55 0.75 0.99 1 0 0.98 0.44 0.05
10 0 0.20 1 1 0.19 0.41 0.95 1 0 0.02 0 0
20 0 0 0.75 1 0.07 0.21 0.88 1 0 0.06 0 0

(Lreal ≥ Ld), with M = 100, N = 100 for Algorithm 3 and
4, respectively.

According to the diagnosis results in Table II, TPR (correct
location detected) remains 1, and FPR (non-faulty location
detected as faulty) varies based on fault intensity. In general,
diagnosis resolutions are excellent for µ-faults, even with K as
low as 2. On the other hand, σ-faults are harder to diagnose
with higher FPRs. This is as expected, since when the fault
intensity is small (L = 2), the faulty δ tends to be similar to
the good δs and it becomes hard to pinpoint the faulty δs. As
the fault intensity increases or the number of challenges used
in the test increases, FPR reduces.

VII. CONCLUSION

Uniqueness is an important quality for APUF as a promising
security primitive. We observed that a widely-used uniqueness
metric is flawed and defined a modified uniqueness metric.
We showed that two types of production line faults, µ-faults
and σ-faults, have great impact uniqueness, as is captured by
the modified uniqueness metric. We proposed a low-cost and
efficient test flow for testing and diagnosing these production
line faults for APUF batches.

REFERENCES

[1] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclonable
functions and applications: A tutorial,” Proc. of the IEEE, vol. 102, no. 8,
pp. 1126–1141, 2014.

[2] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas, “Identifi-
cation and authentication of integrated circuits,” Concurrency - Practice
and Experience, vol. 16, pp. 1077–1098, 09 2004.

[3] W. Che, F. Saqib, and J. Plusquellic, “Puf-based authentication,” in IEEE
ICCAD, 2015, pp. 337–344.

[4] Y. Lao and K. K. Parhi, “Statistical analysis of MUX-based physical
unclonable functions,” IEEE TCAD, vol. 33, no. 5, pp. 649–662, 2014.

[5] Y. Cui, C. Wang, W. Liu, Y. Yu, M. O’Neill, and F. Lombardi, “Low-
cost configurable ring oscillator puf with improved uniqueness,” in IEEE
ISCAS, 2016, pp. 558–561.

[6] S. Khan, A. P. Shah, S. S. Chouhan, N. Gupta, J. G. Pandey, and
S. K. Vishvakarma, “A symmetric d flip-flop based puf with improved
uniqueness,” Microelectronics Reliability, vol. 106, p. 113595, 2020.

[7] C. Gu, N. Hanley, and M. O’Neill, “FPGA-based strong PUF with
increased uniqueness and entropy properties,” in IEEE ISCAS, 2017.

[8] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large scale
characterization of RO-PUF,” in IEEE HOST, 2010, pp. 94–99.

[9] Y. Wei, T. Fox, V. Dumoulin, W. Rao, and N. Devroye, “APUF faults:
Impact, testing, and diagnosis,” in DATE, 2022, pp. 442–447.

[10] L. Feiten, M. Sauer, and B. Becker, “On metrics to quantify the
inter-device uniqueness of PUFs,” Cryptology ePrint Archive, Paper
2016/320, 2016. [Online]. Available: https://eprint.iacr.org/2016/320

[11] Z. Jouini, J.-L. Danger, and L. Bossuet, “Performance evaluation of
silicon physically unclonable function by studying physical values,” 2011.

[12] Y. Hori, T. Yoshida, T. Katashita, and A. Satoh, “Quantitative and
statistical performance evaluation of arbiter physical unclonable functions
on fpgas,” 2010 International Conference on Reconfigurable Computing
and FPGAs, pp. 298–303, 2010.


