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Abstract—This paper considers the single antenna, static,
scalar Gaussian broadcast channel in the finite blocklength
regime. Second order achievable and converse rate regions
are presented. Both a global reliability and per-user reliability
requirements are considered. The two-user case is analyzed in
detail, and generalizations to the K -user case are also discussed.

The largest second order achievable regions presented here
require both superposition and rate splitting in the code con-
struction, as opposed to the (infinite blocklength, first order)
capacity region which does not require rate splitting. Indeed, the
finite blocklength penalty causes superposition alone to under-
perform other coding techniques in some parts of the region. In
addition, the proposed scheme uses joint simultaneous decoding
as opposed to successive interference cancellation.

Interestingly, in the two-user case with per-user reliability
requirements, the capacity achieving superposition encoding
order (with the codeword intended for the user with the smallest
received SNR as cloud center) does not necessarily give the largest
second order region. Instead, the message of the user with the
smallest point-to-point second order capacity should be encoded
in the cloud center in order to obtain the largest second order
region for the proposed scheme.

Index Terms—URLLC; superposition coding; non-orthogonal
multiple access; joint simultaneous decoding; rate splitting; finite
blocklength; broadcast channel.

I. INTRODUCTION

Wireless communications is deeply integrated into many
aspects of everyday life. The delivery on the promise of
high bandwidth with reasonable latency has driven much
interest into use cases that were previously considered less
suitable for wireless communications. These are use cases
requiring very low latency coupled with very high reliability.
Wireless links are replacing wired links in remote, real-time
control and monitoring in manufacturing, and in applications
where wired links are impossible, such as unmanned aerial
vehicles (UAV) and autonomous vehicles. For example, a key
component of 5G New Radio, Ultra-Reliable and Low Latency
Communications (URLLC) is the 5G service category with sub
millisecond end-to-end delays and over 99.999% reliability
[3] designed to meet these new requirements. Characterizing
the performance of various code constructions operating under
URLLC conditions has been a subject of interest [4], [5].
These works focus on an orthogonal URLLC operation, where
communication is modeled as point-to-point links and makes
uses of point-to-point results for channels at finite blocklength.

The Authors are with the Electrical and Computer Engineering Department
of the University of Illinois Chicago, Chicago, IL, USA. E-mails: danielat,
psheld2, smida, devroye @uic.edu. Part of this work was presented at [1],
[2]. This work was supported in part by NSF Award 1900911.

However, orthogonalization is known to lead to achievable
rates below the capacity of many multi-user channels even in
the infinite blocklength case. Thus, understanding the funda-
mental behavior of multi-user networks at finite blocklengths
from an information theoretic standpoint is critical to bench-
mark various neXt URLLC generation (XURLLC) schemes.

In this paper, we derive approximations to the finite block-
length rate region for the single antenna, static, Gaussian
broadcast channel in the spirit of the so-called normal ap-
proximation [6], which is a refined analysis of how the mutual
information density concentrates to its mean as the blocklength
increases while the error rate is kept fixed as the blocklength
varies. The normal approximation quantifies how many bits
can be sent through the channel within a finite number of
channel uses while maintaining a given reliability.

Our proposed scheme uses rate splitting, superposition
coding, and joint simultaneous decoding, which achieves the
(infinite blocklength, or first order) capacity of the considered
channel model [7, Section 5.2, and Problem 6.18]. When
decoding for the two-user case, the user with the smallest
receive SNR (referred to as the ‘weak user’) recovers its
message while treating the message for the other user as noise.
The weak user’s message is encoded into a codeword that is
commonly referred to as the ‘cloud-center.” The user with the
largest receive SNR (referred to as the ‘strong user’) recovers
jointly and simultaneously both messages, and its message is
encoded into a codeword that is commonly referred to as the
‘satellite.’

While the benefits of superposition coding have been long
known, the complexity of the decoder has meant that a
consideration of the technique for practical networks has
only emerged more recently [8]. Superposition coding has
been included in many recent works on the benefits of
non-orthogonal multiple access (NOMA) in future networks,
see [9]-[11] and references therein. Most of the NOMA work
has focused on superposition coding implemented with Suc-
cessive Interference Cancellation (SIC) decoding [7, Figure
4.10]. SIC refers to the decoding process by which a user
first decodes the messages intended to weaker users (i.e.,
users that have lower receive SNR), subtracts them from the
received signal, and then decodes their own message. SIC
is however not optimal in general, see for example the 3-
user broadcast channel with degraded message sets in [7,
Section 8.2]. Simultaneous (SIM) joint decoding, by which
a user jointly decodes its own message and all the messages
intended to weaker users, in general outperforms SIC in the
infinite blocklength case [7, Problem 6.6]. SIM decoding has
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been considered in some recent NOMA literature, such as for
example [12]. Our techniques presented here for SIM can be
straightforwardly applied to SIC decoding as well.

Any NOMA scheme that requires some users to decode
messages in addition to their own, opens up the possibility
of rate-splitting [7, Proposition 4.1], by which the transmitter
may allocate some portion of a message to be decoded
by a set of users that are not otherwise interested in that
message. Rate Splitting Multiple Access (RSMA) is a practical
communication application of much recent interest (see [13]
and references therein) that shows the use of rate splitting can
outperform NOMA alone in certain practical cases. Here we
investigate the second order properties of the most general
version of superposition coding in [7, Problem 6.18], where it
is shown that the alternative characterization of the capacity
region for the more capable broadcast channel in [7, Section
5.6.1] can be obtained by using rate splitting, superposition
coding, and Fourier—-Motzkin elimination. In other words, our
proposed scheme uses rate splitting, superposition coding and
SIM, and in doing so provides a possible information theoretic
Jjustification for the observed benefits seen by RSMA in the
current literature.

When considering finite blocklength operation of multi-user
networks, care must be taken to how reliability is defined
and measured. For the broadcast network, consisting of a
single transmitter and multiple receivers, it can take two forms.
It may be a global requirement of reliability, i.e., the joint
probability of any user failing to decode its intended message,
not exceeding a given value [7, Sec 5.1]. Alternatively, it may
be a per-user requirement, where the probability of each user
decoding their intended message(s) in error must not exceed
a threshold specified for that user, which may differ across
users. In xXURLLC, some use cases will have varying reliability
requirements and may be delivered simultaneously and in
a non-orthogonal manner to other services, like enhanced
Mobile Broadband (eMBB). Virtual/Augmented Reality ap-
plications will likely have relaxed reliability requirements
compared to remote surgical applications. A transmitter that
simultaneously sends entertainment information to one user
while transmitting critical public safety information to another
is another example. This network should not be constrained
by a global error probability, as enforcing the most stringent
reliability requirement may significantly reduce the overall
performance. This motivates us to consider both definitions
of reliability in this work.

Since the beginnings of information theory as a discipline,
much effort has been spent in working to bridge between the
elegant convergence of the optimal coding rate to capacity and
results that give more practical insight. In short, what can be
said about practical networks that operate at finite blocklength?
The importance of these non-asymptotic fundamental limits
to real networks was recognized very early and the first
results were produced almost immediately by Shannon and
Feinstein [14], [15], and then by Gallager [16]. In the ensuing
years much progress was made in ‘large-deviation’ analysis, a
study of the decay of the probability of increasingly unlikely
events. This provided precise values for the rate of decay
in the probability of error for fixed rates below capacity as

channel uses increased — the so-called ‘error exponent regime.’
Hayashi [17] and Polyanskiy et al. [6] improved the state of
the art and derived tight non-asymptotic results for a variety
of point-to-point channels assuming that the error probability
remains fixed while the blocklength increases and the rate
converges to capacity — the so-called ‘second order regime.’
This work adopts the second order rate region perspective.

The preceding discussion on non-asymptotic results con-
cerned point-to-point communication problems. The practical
usefulness of these results has driven significant interest in
applying similar techniques to multi-user channels. Much work
has focused on the Multiple Access Channels (MAC), such
as [18]-[20], which considered both the discrete memoryless
and the AWGN models. Interestingly, for the Gaussian MAC
the second order region is not tightly characterized yet. Other
variations on the MAC at finite blocklength have been con-
sidered — such as, fading and random access [21], the number
of users scales with the blocklength [22], [23], with output
feedback [24], with cooperation [25], etc. — but those are not
directly relevant to this work. Directly relevant to our work
is [26], which considered the Gaussian MAC with degraded
message sets, that is, one of the two transmitters knows both
messages at the time of encoding; in this case the second
order region is known. In our conference paper [1], we made
use of several techniques developed in [20], [26], such as the
multivariate Berry-Essen Theorem and methods for bounding
the probability of error for threshold decoding, which we
extend here to the case of any number of users and also to the
case of per-user reliabilities.

The Broadcast channel (BC) at finite blocklength has been
studied for example in [19], where an achievable region for
the two-user, discrete memoryless, asymmetric (where one
receiver has to decode both messages) BC was presented.
In [27], the two-user AWGN BC with heterogeneous block-
lengths was considered; our work with global error is the
special case where the two blocklengths are the same, yet
our construction produces a larger region in this case. In [28],
[29] the AWGN BC channel with superposition coding was
analyzed based on point-to-point results; it is unclear which
code construction would achieve the dispersion utilized in the
analysis, possibly that in [30].

Many second order results, including our own, rely on
power-shell codebook construction. A power shell for a code-
book of length n is the (n — 1) sphere centered at zero whose
radius is v/nP, where P is the average input power constraint.
A power shell construction is a random coding argument
where codewords are chosen uniformly at random from that
(n—1)-sphere. Power shell construction aligns with Shannon’s
observation about the optimal decay of the probability of error
near capacity of the point-to-point Gaussian channel, which is
achieved by codewords on the power-shell [31].

A. Contributions

In this paper we aim to characterize the second order
rate region of the K-user single antenna, static, Gaussian
BC, under global and per-user reliability constraints, in the
case where the users have the same blocklength. Our main
contributions are as follows.



e (1) Achievablity. By utilizing modified techniques
from [26], we show that superposition coding with rate
splitting provides the largest second order achievable rate
region for this BC network in the case of two users.
Through the addition of rate splitting, our achievable
region for the two-user case is a super-set of the region
presented in [27] evaluated for equal blocklength for the
users. An extension to any number of users, albeit without
rate splitting, is also given.

e (2) Converse. We generalize the converse argument pro-
vided in [27] to the K -user case, as well as to the per-user
reliability constraints, which to the best of our knowledge
has never been reported before.

¢ (3) Unexpected behavior under per-user error. Finally,
for the case of per-user reliability and two users, we show
that the capacity achieving ordering of superposition
coding, where the weak user’s message is encoded in the
cloud center, and the strong user’s message is superim-
posed as a satellite, does not always achieve the largest
second order region. The optimal ordering is instead
determined by the second order point-to-point capacities
between the transmitter and each of the users. For strictly
more than two users, the best superposition coding order
with per-user reliabilities changes for different points on
the boundary of the second order region.

Several natural questions arise from our analysis. The first
concerns how our results change when the channel is subject
to a random fading process, and closely related is the per-
formance for multiple antenna BC. Our results hold for the
SIMO AWGN case where the ordering is performed using
the post receive combining effective scalar channel’s SNR.
Multiple antennas at the transmitter and fading in general lead
to complex optimization problems. For point to point channels
recent advancements have been made in [32], [33] that point
the way to extending this analysis. Another question is how far
from these theoretical limits are practical codes. As shown in
[34, Sec 5.2], there is still a sizeable difference between rates
achieved by modern codes and what has been shown to be
achievable theoretically for P2P AWGN channels, especially
for shorter blocklengths. Closing this gap for P2P channels
remains an active area of research, as does the development of
superimposed codes that approach the theoretically achievable
bounds.

B. Notation

For reals a < b, we let [a,b] := {z : a < x < b}. For
integers a < b, we let [a : b] := {a,a+1,...,b} and [b] :=
[1 : b]. 6(-) is the delta Dirac function. We write f(z) =
O(g(z)) if a positive M and an z; can be found such that
|f(z)] < Mg(x) for all z > z; we also use O,, as a shorthand
notation for O(n). We refer to real-valued vectors of length n
as x (bold font). We include a superscript (™) when we wish
to highlight the length of the vector. 1 and O denote the all-one
and all-zero vector (or matrix), respectively. For vectors a and

b in R", the inner product is denoted as (a,b) = >, aibi,

which induces the norm ||a|| = /{(a, a). The (n — 1)-sphere
of radius r > 0 is the set

Sp-1(r) = {a € R" : ||a|| = 7}, (1)
whose surface area is denoted as
27T7L/2 1

Sp(r) = F(n/2)r (2)
Note that the set in (1) is denoted by the calligraphic font and
has subscript n — 1, while the real non-negative number in (2)
is denoted by the normal font and has subscript n as in [26].

Z ~ N (p, V) denotes that Z is a jointly Gaussian vector
with mean g and covariance matrix V, with cumulative
distribution function (cdf)

U(x;u, V) =Pr[Z < x|, 3)

where the inequality “Z < x” in (3) is intended component-
wise, and with probability distribution function (pdf)

OU(zyp, V) e z@mw 'V ix-m
: V = = . 4
N (@5, V) Ox det[27V] @

Following [26, eq(33)], for £ € [0,1] and covariance matrix
V', we define the set

Qinv(e;V)={a:¥(-a;0,V)>1—¢}. (5)

The capacity, in nats per channel use, of the point-to-point
Gaussian channel with SNR z is

Clz)=1/2In(1+z), 0 <. (6)

Second order results for multi-user Gaussian channels are
often expressed as a function of the cross-dispersion function

z(2+y)
21+ )(1 +y)’ =

The point-to-point Gaussian dispersion function is

V(z,y) = z<uy. (7)

T2+ ooy (8)

V(z) =V(z,2) = m, <

The normal approximation of the second order capacity of the
point-to-point Gaussian channel with SNR =z, for n channel
uses and reliability ¢, is denoted as

k(n,z,e) = Clx) — 4/ @Q_l(s), 0<z,e€[0,1], (9

which is an accurate proxy for achievable rates for values of
the parameters for which k(n,y, €) is at least comparable with
In(n)/n [6]. In (9), Q~1(.) denotes the inverse of the function

+oo 1
z V2T

For the scalar case, the set defined in (5) is

Q(x) = o= t/2 dt, x € R. (10)
Qm(eso?)={aeR:a< —Vo2Q ' (e)},e €0,1]. (11)

The set in (11) only contains negative values for £ € [0,1/2).



II. PROBLEM FORMULATION

We consider the memoryless K -user real-valued static Addi-
tive White Gaussian Noise (AWGN) Broadcast Channel (BC),
where the channel between the base-station sending signal X
and the multiple receivers is modeled as Y; = h;X + Z;
for user ¢ € [K]. Here h; is the constant, real-valued chan-
nel state between transmitter and receiver ¢, and Z; is the
Gaussian noise at receiver ¢, assumed to be independent of
all other noises and of the input, and have zero mean and
variance o2. The input X is subject to the power constraint
E[X?] < P. Given these normalizations, the SNR at receiver i
is v; := P|h;|*/o2, i € [K].

We are interested in the so-called second order regime,
where the block-length n is assumed to be large, but not
infinite, and the average probability of error is bounded by
€, which may be small but not vanishing in n. For most
memoryless point-to-point channels, it has been shown [6],
[17] that M™*(n,c), defined as the maximum number of
messages that can be sent within n channel uses and with
an average probability of error not exceeding €, behaves as

1/n InM*(n,e) = k(n,7,€) + Ommn)/n, 12)

where the normal approximation function x(-) was defined
in (9), and where the term /V(vy)/nQ~*(¢) concisely cap-
tures the rate penalty incurred by forcing decoding after n
channel uses and allowing a probability of error no larger than
€ € (0,1) on a point-to-point Gaussian channel with SNR .
In this paper we aim to develop expressions akin to (12) for
the two-user AWGN BC. We will also provide extensions to
any number of users. We start with the formal definition of
the second order region for the two-user case, which can be
straightforwardly extended to any number of users.

Definition 1 (Code with Global Error). Given integer sets
(Mo, My, M), integer n, and non-negative reals (P, ¢), an
(n, | M), M|, |Maz]|, P,€) code for the two-user AWGN BC
has: (i) three independent and uniformly distributed messages
on Mg x My x May; (ii) one encoder function enc : Mgy x
My x My — R™ with power constraint

||enc(m0,m1,m2)||2 < nP, (13)

for all (mg, m1, ma) € Mox My x May; and (iii) two decoder
functions decy, : R™ — Mox My, k € [2], with average global
probability of error satisfying

Pr [UkE[Q] deck(YZ) 75 (Wo, Wk)] <e, (14)
where in (14) it is understood that (W, W7, Ws) was sent. [

We shall use ¢ to denote the largest allowed average
probability of error, and ¢, for the probability of error of a
code of block-length n. Again note the difference in font type.

Definition 2 (Second Order Capacity Region with Global
Error). A non-negative rate tuple (Ry, Ry, R2) is said to be
(n, €)-achievable if there exists a (n, Mo n, M1 n, M2 p, P, €,)

code with global error for some n with €, < ¢ and W >
R; for j € {0,1,2}. Let C(n,c) denote the set of all (n,¢)-
achievable rate tuples, referred to as the second order capacity

region (with global error). O

Definition 3 (Capacity Region). The capacity region C is

C(e) = Up>1C(n,¢), (15)
C= ﬁ‘fs>OC(€)a (16)

(e-capacity region),

(capacity region).

The two-user Gaussian BC enjoys a strong converse [35], that
is, the capacity region satisfies (where WLOG ~v; > 79)

c=ce= | {(RO, Ry, Ry) € R : (17a)
a€l0,1]
1—
Ry+ Ry < C ((m) , (17b)
14+ avye
Ry < C(am) } (17¢)
where « is interpreted as the power split parameter. |

Goal. We aim to find, or bound, the second order region
C(n,e) by characterizing the rate penalty terms to be in-
cluded in the capacity region in (17) akin to the term

VV(7)/nQ~t(e) in (9) for point-to-point channels.

Remark 1 (On Per-User Error). We shall also use, instead
of the global probability of error in (14), the per-user average
error probability criteria

Pr[deck(Yk") #£ (Wo,Wk>] <eg, k€ [2] (18)

The definition of code and second order region with per-user
error in (18) follow similarly to those with global error and is
not repeated here for sake of space. ]

III. MAIN RESULT

The main result of this paper for the two-user case is
summarized in Theorem 1. The converse proof can be found
in Section V and the achievability in Section VI, with all
the details regarding rate splitting, superposition coding and
SIM decoding. Extensions to the K -user case can be found in
Sections V-A and VI-A.

Theorem 1 (Second Order Regions with Global Error). Given

the model in Section Il for global error €, we have
REW(n,e) C Cn,e) € RV (n,e), (19)

where the regions RSUP(n, ¢) and RS (n, ¢) are as follows.
The region RSUP)(n, ¢) is attained by rate splitting, super-
position coding, and SIM, and is given by

RPm,e)= ) {(Ro R, o) € R :

(a,B,€10,€11,€2)€[0,1]°

1_
Ro+ Ry + R, <C (( a)w)
1+ ay

1
=/ 2V(072,%2)Q 7 (€2) + Omimy/ms - (200)
(1 - ﬂ)Rl S K}(TL, a7, 610) + Oln(n)/n7 (20b)
Ro+ Ry + Ra < k(n,v1,€11) + Oln(n)/n}7 (20c)

where « is the power split and 3 the rate split. The dispersion
in (20a) is defined as

V' (ay2,72) == V(ay2) + V(72) — 2V(ay2,72) (21a)



_ (1 — a)y2(2093 + Y2 + 3aye + 2)

2 + 1)2(as + 1)2 , (21b)

with V(-,-) and V(-) are defined in (7) and (8), respectively.
The triplet (€19, €11,€2) € [0, 1] satisfies
(I—€)(1—€)>1—¢, 22)
where €1 is the error rate at receiver 1 which satisfies
Feto, e1157(av1,71)) > 1 — e, (23)

where the probability of correct decoding function F(-, ;) is

F(e1o, €1157) := Pr [G2 < Q' (e10), (24a)
rGa + V1 —12G3 < Q '(enn)], (24b)

for Go,G3 iid. standard Gaussian random variables, and
the correlation coefficient r(avy1,v1) in (23) is defined as

V(ayr, 24 )
r(ay,m) = o) _ [@+m) - (25)

V(am)V(n) (2+am)

The region RS (n, €) is the cut-set-type region

RS (n,¢) (Ro, R1, Ro) € R3 (26a)
Ry + Ry < H(n Y1, € ) + Oln(n)/nv (26b)
Ry + R2 < ’i(n V2, € ) + Oln (n)/n» (26¢)
Ro+ Ry + Ry < k(n, max(71,72), 26) + Oa(an) /n}. (26d)

Remark 2 (Second Order Regions with Per-User Error). In
Theorem 1, the achievable second order region RSUP(n, ¢)
in (20) without the constraint in (22), which links the error
rates at the two receivers (that experience independent noise
by assumption), gives an achievable region for the case with
per-user error criteria. When we remove the constraint in (22),
we indicate the achievable region as RSUP)(n, €1, €3) to stress
the two per-user probability of error requirements.

With per-user error, the achievable region akin to the one
in Theorem 1 is ROV (n €1, e2) URSUPI (n, €1, €5), where
REUP(n, €1, €5) is the region in (20) (with the superposition
coding order that is capacity achieving under the assumption
Y1 > v2), and the region RSYPD(n ¢, €y) is similar to the
region in (20) but with the role of the users swapped (that
is, with the message of user 1 in the cloud center). While
swapping the order of superposition coding does not appear
to enlarge the achievable region in Theorem 1 for global error,
it provides improvements when one considers per-user error
as we will show in Section IV.

The outer bound region R (n, ) in Theorem 1 can also
be extended to the case of per-user error. In particular, the
single user bounds read Ro+ R; < k(n,7;,€;) + Om(n)/n for
j € [2], and the sum-rate bound becomes Ry + Rq + R2 <
K(n, max(y1,72), €1 + €2) + Owm(n) /n- O

Remark 3 (On the Dispersion of Decoding the Message in
the Cloud Center). Let
y—z _ (1—a)p

= < = = =
x avy2 =Y Y2, < 1+ ].+Oé’)’27

27
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Fig. 1: Dispersions vs. « for vy, = 10.

where z represents the SINR in decoding the cloud center by
treating the satellite as a noise in Theorem 1. The dispersion

V/(-,-) in (21a) can be upper bounded as follows
Vi(z,y) =V(z) + V(y) — 2V(z,y) (28a)

(y—2z)2zxy+3x+y+2)
= 28b
21+ 2)2(1 +y)? (28)

z(2+ zh—jll)
arr+a) = V) (28¢)
and lower bounded as follows

V/(z,y) > V() —2\/ (28d)
= (v/V(y) — vV(z) (28e)

Recall that V'(-,-) in (21a) is the dispersion for the rate of
messages carried by the cloud center. From the upper bound
in (28¢c), we see that V'(-,-) in our scheme is lower than the
dispersion of a point-to-point Gaussian channel in which the
interference from the satellite codeword is treated as Gaussian
noise. We do not have at present an intuitive interpretation
of the lower bound in (28e). The dispersion V'(avy,~y) vs
« is depicted in Fig. 1. In [30, Theorem 2] the Authors
considered the performance of nearest-neighbor decoding of
independent codewords drawn uniformly at random from two
classes of distributions. We note that V'(-,-) in (21a) is the
special case of [30, Eq(23)] for codes on the power sphere for
the AWGN channel with two users. The same paper also shows
that with i.i.d. Gaussian codes, on the AWGN channel, and
with nearest-neighbor decoding, the dispersion is [30, Eq(27)],
which equals z/(1 + z) where z is the SINR. The dispersion
z/(1+z) is often used to assess NOMA performance by means
of (sub-optimal) point-to-point results. ]

Remark 4 (On Reliability Allocation). The probability of cor-
rect decoding function in (24) is monotonic in the correlation
coefficient r € [—1,1]. Some of its values are
F(eo, e1;+1) =Pr[G2 < Q' (eo), G2 < Q!
= PI‘ [Gg S min(Qfl(eg), Qil(el))}

(29a)
(29b)

(e1)]



=1 — max(eq, €1); (29¢)
and
F(eo,€1;0) = Pr[G2 < Q '(e0), G5 < Q7' (e1)]  (30a)
=Pr[G2 < Q '(eo)] Pr[Gs < Q '(e1)] (30b)
=(1—¢€)(1—¢€); (30¢)

and

F(eo,el; —1) =Pr [GQ S Q_l(EO), —G2 S Q_l(él)] (318.)
=Pr [Q_l(l —€)< Gy < Q_I(EO)] Tf1—e;>¢)  (31b)
=[1—e — €™ (31c)

We thus conclude that the “error rates region” {(ep,€1) €
[0,1]% : F(eg,€1;7) > 1 — ¢} monotonically enlarges with
r from the triangle ¢y + ¢; < € for r = —1, to the square
max(ep,€1) < € for r = +1, as depicted in Fig. 2. This
is the set of reliability pairs that we can optimize over in
the superposition coding inner bound for receiver 1. Indeed,
consider the function 1 — F(€gat, €cc;7) = €1, which is the
average probability of error at receiver 1. It includes two
terms: €g,y 1S related to the reliability of decoding the satellite
codeword, and €. is related to the probability of erroneous
decoding of the cloud center codeword (and thus also the
satellite). A decoding event in which the receiver recovers
the satellite, but fails to recover the cloud center would be
counted towards €., but not eg,. Overall, the optimization in
the superposition coding achievable region implies that we can
choose the best reliability allocation among these two terms
in order to achieve an overall reliability €; at receiver 1.

As this optimization concerns a single user, it is relevant
to both the global and per-user reliability cases. For global
error, a further optimization step in the achievable region is
possible: we can choose overall reliability €; at receiver 1 and
€9 at receiver 2 such that 1 —(1—e;)(1—ez2) < ¢, where ¢ is the
maximum global average probability of error. Therefore, we
see that reliability optimization can be leveraged to optimize
the downlink performance with latency constraints. O

Remark 5 (On Time Division with Global Error). A baseline
scheme for the case of private rates only, that is, for Ry = 0,
is the second order region achieved by Time Division Multi-
plexing (TDM) with power control, given by

RIOM ( ¢) = U {(Ri,Ry) €R%:  (32a)
(T1,72,€1,€2)€[0,1]*, (a1 ,002) ERZ ¢
T1+72<1, mai1+72a2<1
(1761)(1762)2175
Ry < mik(min, a1y1,€1) + O(ln(min) /n), (32b)
Ry < mak(Tan, agyz, €2) + O(In(men)/n)}, (320)

where 7;n channel uses are allocated to receiver j, subject
to the total time constraint 71 + 72 < 1; where power a; P is
allocated to receiver j, subject to the average power constraint
Tiop + Teae < 15 and where €; is the reliability allocated to
receiver j, subject to the average probability of error constraint
(1 —€)(1 —€3) > 1 — ¢ (as the noises are assumed to
be independent). We shall plot this region in our numerical
evaluations. Numerically we observed that o is always greater

than o for points on the boundary of R™M(n, ¢), however
the optimal parameters are difficult to describe analytically
as they are linked with the optimization of the time split
parameters 71, 72 and of the reliabilities €1, €. O

Remark 6 (On Concatenate & Code with Global Error). The
choice 8 = 1in RSUP)(n, ¢) means that no satellite codewords
are sent, that is both users decode the same codeword with
each user recovering their message from some fraction of the
bits encoded. In [1] we referred to this case as Concatenate
& Code Protocol (CCP). CCP is obtained as a special case of
RO (n, ¢) for a = 0 and €19 = 0, resulting in V'(0,72) =
V(72). Thus, the CCP region is

REP (n,e) = {(Ro, R, R2) € R : Ry + R1 + Ry (33a)

< max ;nin(m(n,’yl, €1), k(n, 72, €2)) + Orn(n)/n }-
(e1,e2)€[0,1]
(1—e2)(1—€1)>1—¢

(33b)

We note that it is possible to have k(n,v1,€1) < Kk(n, ¥z, €2)
even under the assumption ~; > 79 if € < €2. Numerically
we observed that the optimal reliability allocation is €; < €5 =
e such that x(n,v1, €1) = K(n, 72, €2). O

Remark 7 (On Superposition Coding without Rate Splitting
with Global Error). An achievable region without rate splitting
is obtained by setting 8 = 0 in RSUP(n,¢); in this case
we numerically observed that the sum-rate bound is always
tight (that is, eq(20a)+eq(20b)=eq(20c)), and that the optimal
reliability allocation is such that €17 < €19 = €;. We shall
refer to this region as REUPIRS) (&) given by

R(SUPRORS) (1 oy — U {(Ro, Ri,Ry) € RS @ (34a)

(av,€2,€1)€ [0,1]3
eq(20a)+eq(20b)=eq(20c)
(1—e2)(1—€1)>1—¢

1—
Ro+Ry<C (( O‘m’) (34b)
14+ av
1
- EV/(O"YQ, 72)Q71 (62) + Oln(n)/na (34¢)

1
Ry < Clam) = /- V(@n)Q" (€1) + O /n}. (34d)

Numerically we also observed that optimizing § € [0,1]
in ROUP)(n g) always results in either R (n,e) or
R(SUPnoRS)(n7 6). O

Remark 8 (On SIM vs SIC with Global Error).
REVPSIO () = U {(Role,Rﬁ eRY :

(a,B,€10,€11,€2)€[0,1]°

1_
Ro+ Ro+ BRy < C <( a)vz)
1+ ay

(35a)
(35b)

1
- EV’(OW%W)(T1 (€2) + Orn)/n>
(1 - B)Rl < H(TL, a1, E10) + Oln(n)/na

1—
R0+Rz+5R1<C<(a)%)
14+ am

1
- EV,(OWM 71)Q " (€11) + Om(n) /s }, (35¢)
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where « is the power split and § the rate split. The dispersion

in (35a) and (35¢) is defined as in (21a) with V(-,-) and
V(:) are defined in (7) and (8), respectively. The triplet
(610,611,62) € [0, 1]3 satisfies

(I—€)(1—€)>1—¢, (37
where ¢€; is the error rate at receiver 1 which satisfies
F(ero, €113 m(ay1, 1)) > 1 — e, (38)

where the probability of correct decoding function F(-, ;) is

F(e10, €11;7) := Pr [G2 < Q! (eo), (39a)
rGa + V1 —12G3 < Q '(enr)], (39b)

for G, G3 i.i.d. standard Gaussian random variables, and the
correlation coefficient r(ay1,7y1) in (38) is defined as

V(CWl, ’Yl) - V(OZ’Yh a’71)

r= )
VIV, m) + V(ay, am) —2V(ey, m))V(ay, am)

(40)

Extensive numerical simulations show that RSUP*SIO(p ¢)

and RBYP)(n, ), which uses SIM, are equivalent to a limit an
order of magnitude less than the O\, (y,)/n higher order terms
of the approximation. (]

Remark 9 (Extension of TDM, CCP, SUPnoRS, SUP+SIC,
to the case of per-user error). One can define re-
gions RM™M(n e, e) (akin to (32)), REP(n, e, e0)
(akin to (33)), ROUPMRS) (5 ¢) ¢;) (akin to (34)), and
REUPHIO (1, €1, €5) (akin to (35)) for per-user error by remov-
ing the constraint (1 — €3)(1 —€1) > 1 — ¢ in the respective
optimizations. The order of superposition can also be swapped
in order to possibly obtain larger achievable regions. (]

IV. NUMERICAL EVALUATIONS

We start by giving numerical evaluations of the second
order rate region in Theorem 1 for private rates only, that is,
Ry = 0. Numerically we observed that: (i) achievable regions
are not convex when the normal approximation terms become

comparable to In(n)/n, which is the areas highlighted in grey
in the figures; and (ii) 8 € (0,1) never gives a point on the
boundary of the region RSP (n, ¢), that is, ROYP(n,e) is
the union of RESUPORS) (g £ in (34) and RCP)(n, ) in (33).

In Fig. 3 we plot in the left column the regions
REUPIORS) (1 ), REP)(n, g), and REYP)(n, ) . As a base-
line, we plot R™M(n ) in (32). As a converse bound, we
plot R (n,e) in (26). In all plots, we set 7o = 10, and
e = 107°. We neglect the third-order term Omn(n)/n- We note
that when the SNRs are comparable and n is not too large,
CCP is superior to SUPnoRS when the user with the largest
SNR has a relatively low rate.

In the second column in Fig. 3 we show the optimal power
and rate split vs Ry. We observe the sharp transition in S that
marks when CCP outperforms SUPnoRs. Improved channel
conditions of the strong user decrease the « at which this
transition occurs. As the SNRs become more dissimilar, the
portion of the achievable rate region boundary attained by
CCP decreases. The right column in Fig. 3 shows the optimal
reliability allocation vs . We observe that the €;; term
indicates that in the optimal allocation the strong user recovers
the cloud center with a very high reliability across the rate
region. More generally, we see that a relaxation of reliability
for a user recovering their message is optimal as the rate
demands of that user increase.

Fig. 3 demonstrates sets of channel conditions in which both
B =1and 8 = 0 are required to achieve the largest achievable
rate region. In contrast, Fig. 4 show channel conditions in
which only 5 = 1 (left, effectively CCP alone) and 5 = 0
(right, effectively SUPnoRS alone) are required to achieve the
largest achievable rate regions when the rate of each user is
larger than log(n)/n.

In Fig. 5 we present a plot showing the coding scheme used
to achieve the largest achievable regions across a set of channel
conditions 71,72 € [2,50] for ¢ = 107! and a blocklength
n = 100. For each point in the plot, we evaluated the CCP,
SUP, and SUPNoRS regions. The points are colored based
on the “simplest” coding scheme that achieves the largest
achievable region for meaningful rates, that is, rates larger
than In(n)/n, for both users. Here “simplicity” is a somewhat
arbitrary measure we define as {CCP, SUPNoRS, SUP} with
complexity increasing from left to right. This intuitively corre-
sponds to the complexity of the coding scheme implementation
by broadcaster and receiver, but more importantly we use
it to illustrate the fact that for a very large set of channel
conditions and reliability requirements, rate splitting (either
as part of SUP or alone as CCP) is required to achieve the
largest achievable rate regions. In the global reliability case
this plot is symmetric about the line y; = 2 so only the top
half is plotted.

We now show plots for the per-user error requirements.
In Fig. 6 we present RP(n, e, e5), RSP (n, €1, €2), and
RS (n, €1, €) for four scenarios. In all scenarios the SNRs
are v; = 35 and 72 = 30. The scenario’s blocklength and
reliability requirements are varied. For the top row n = 100,
and for the bottom row n = 5000. The reliability constraints
are varied from left to right. On the left, user 2 has a more
relaxed reliability requirement of 0.9% and user 1 has a
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high reliability requirement of 99.999%. When user 2 has a
larger point-to-point second order capacity (top left), a larger
achievable rate region is found by encoding user 1’s message
in the cloud center. When n is increased to 5000, user 2
no longer has a larger point-to-point second order capacity
and the capacity-achieving superposition ordering provides the
largest achievable rate region. On the right, the plots maintain
a similar shape as n is increased as the point-to-point second
order capacity ordering does not change.

In Fig. 7 we present (as in Fig. 5) the coding schemes that
achieve the largest achievable second order rate region for
thousands of combinations of channel conditions. In each case

user 2 has a higher reliability requirement of 99.999% while
the reliability of user 1 is 90%. The blocklength is fixed at
n = 100. Points marked as SUP-1 are channel conditions and
reliability requirements where encoding user 2’s message in
the cloud center gives the largest region. Points marked SUP-
2 are channel conditions where encoding user 1’s message
in the cloud center gives the largest region. Points marked
as CCP are channel conditions in which neither SUP ordering
produces points on the achievable rate region boundary beyond
what is produced by CCP. The achievable rate region formed
by either SUP-1 or SUP-2 consists only of points where g = 1.
This band clusters around and includes the line where the P2P
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Fig. 5: ‘Simplest‘ coding scheme required to obtain the
largest achievable rate region for two users with varying
channel conditions and a constant € = 0.1 and n = 100.

second order capacities are equal. Finally, unmarked points
correspond to channel conditions in which rate splitting is
not required to achieve the largest region for any rate larger
than In(n)/n. In these cases, a standard capacity achieving
superposition code scheme achieves the best known finite
blocklength achievable rate region.

V. CONVERSE BOUND PROOF

We shall set Ry = 0 at the beginning of this section in
order to simply the notation. We shall also omit to explicitly
write the event {(WWy, W3) sent} within the probabilities of
error. For the two-user AWGN BC with global error bounded
bounded by e, we trivially have

1 —¢e <Pr[dec;(YT) = Wi Ndeca(Yy) = Ws]  (41a)
< min{ Pr[decgenic (YT, Y5) = (W1, W2)], (41b)
Pr[dec; (YT) = W], (41c)
Pr[deca (YY) = W}, (41d)

where each of the terms in the minimum function in (41) re-

lates to the performance of a Gaussian point-to-point channel.
In particular, the probability of correct decoding in (41b) is
that of a gene-aided receiver that has both channel outputs,
and those in (41c) and (41d) correspond to considering the
requirement for one of the users only. Therefore, an outer
bound for C(n,€) from (41) is

Cn,e) C {(Rl,Rg) €R2 : (42a)
R1 < K(n,71,€) + On(n)/n (42b)

Ry < K?(na’y% ) + Oln(n)/na (42¢)
R+ Rz < ksivo(n,71,92,€) + Ouyn p> - (424)

where smvo (7, V1, V2, €) in (42d) is the second order normal
approximation for the Gaussian point-to-point SIMO channel
(with SNRs at the two receive antennas given by 7; and y2)
with error rate ¢; this bound depends on the correlation on the

noises on the two antennas. In [1] we wrote that the sum-rate
in (42d) can be replaced by

Rl + RQ S KJ(’I’L, max('yh 72)7 5) + Oln(n)/nv (43)

which is true only for the physically degraded BC; in this
case Yo = Y; + Zy with Zy ~ N(0,035 — 0%) independent
of Zi, and thus deceenic(YT,Y3) = dec(YT), but for the
general case we cannot draw the same conclusion. Next, we
provide a derivation of [27, Corollary 1] that generalizes
straightforwardly to any number of users. From the series of
inclusions in (44) at the top of page 11, we can bound the
sum-rate for the case of arbitrarily correlated noises as

R; + Ry < k(n,max(y1,7v2),2¢) + Oln(n)/n 45)

Notice that the error term in (45) is 2e, while in (43) it was
€. The sum-rate bound in (45) with the single-rate bounds
in (42) proves the right hand side inclusion in Theorem 1,
after including the common rate Ry back in each bound.

A. Extension to K users
The reasoning in (44) extends to the case of K users and
gives, in the case of private rates only, the bound

C(n,e) C {(R13R27 .., Rik) e RE : VS C [K] (46a)

ZRj < k(n,max{y; : j € S},|Se) + Oln(n)/n}. (46b)
jES
With common rates, the sum ) jes R;” in (46b) must be

extended so as to include the rates of all the messages intended
for the users indexed by the set .S.

VI. ACHIEVABLE BOUND PROOF

Superposition coding with rate splitting and simultaneous
joint decoding is capacity achieving for the more capable BC
(and thus also for the stochastically degraded AWGN BC),
and achieves [7, Sec 8.1]

c- U

(@,B)e[0,1]2
(1- )’Yz

{(Ro,Rl,Rg) eR3

(1-B)R; <C 0471)7

( (47b)
Ro+ R+ Ry < C(’Yl)}7

(47c)

where « is the power split and [ is the rate split. The
constraint in (47c) is always redundant when ; > 79, thus,
the region in (47) is equivalent to (17), and S = 0 is always
optimal. We aim to derive second order terms for (47).
a) Rate Splitting: The message for user 1 is split as
mi = (mlo,mu), VYmy € [Ml], here myi; € [Mlj]aj €
{0,1} and My0My; = M;. We only split the message of the
strong user to mimic the scheme in [7, Problem 6.18].
We aim to construct a superposition coding scheme where
the cloud center carries

(48)

m/2 = (mOa ma, mlO)v
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and the satellite carries

m'l =mii, (49)

As for the decoding, receiver 2 decodes the cloud center only,
while receiver 1 decodes both by SIM. Our code construction
is inspired by [26] for the MAC with degraded message sets:

receiver 1 is exactly the same as the receiver in [26], but in
addition we must consider the decoding constraint of receiver 2
that only decodes the cloud center while treating the satellite
codeword as noise. In addition we also need to include the
power constraint at the transmitter. The details of the scheme
are presented next.
b) Random Code Construction on the Power Sphere:

For a power constraint P > 0, fix real numbers (p, P, P2) €
[~1,1] x Ry x Ry such that!

(1= )P+ (VP2 +pVP)? = P.

We further parameterize (50) as follows, for some « € [0, 1],

(50)

(1- p*)P, = aP, (51a)
(VP +py/P)? =P, =(1-a)P,  (5b)
£:=14 p\/P/P,. (51¢)
I As our proof will show later on, it suffices to consider p = 0 in

the following. This is so because geometrically [26] we can write the pair
(1, ®2) in Dyp(p, P1, P2) in (52) as

as € Sp—1(y/n (1 —a)P)
a] € Sn_g(\/naP)

<a1,a2) =0

r=az+aj:

We decided to describe the scheme with any p € [—1,1] to make the code
construction, and thus its analysis, to be essentially the same as in [26].



Let Fq = {dec1(Y}) # W1} and Es = {decy(Y5) # Wa} be the error events at the receivers. For v; > v, we have
C(n7€> = Uenc,decl,decQ{(Rlv ) Pr[El U EQ] S 6} (443)
== Uenc,decl,decz{(Rla Rg) PI‘[El] + PI‘[EQ \ El] =+ PI‘[EQ} + PI‘[El \EQ] S 26} (44b)
- Uenctdecl,decQ{(Rla RQ) Pr[El] + PT[EZ} < 26} (44c)
= Uenc,decy decs { (R1, R2) : Pr[decy (YT) # Wi| + Pr[deca (YT + Z§) # Wa] < 2¢} (44d)
Q Uenc,decl,decz{(Rla Rg) Pr[dec1 (Y?) # Wl] + PI‘[dECQ(Y?) # WQ] S 26} (446)
g Uenc,deco{(RlaR2) - Pr[deCO(Yl ) 7& (Wla W?)] S 25}, (44f)
where in (44d) we used Y5 ~ YT + Z{, and in (44e) the monotonicity in SNR.
In order to write (51c) we implicitly assumed P>, > 0, or whose (conditional) marginals are
equivalently o # 1; the extreme cases @« = 0 and o = 1 B . n
will be analyzed separately in the following. The codebook is Qv 1x (ylz) =N (y;2 o;) = Wilyl), (55¢)
composed of triplets (1, zo, ) € R3" from the set Qv 1x, (lu) =N (y; &u, (1 = p*)PL+03), (55d)
_ ) 2
Dulp, Pr, o) o= { (@1, @2, 0) € R s 0 =21 + 23, (520) @ 0) =N (1:0.P % 07). 43¢
2=npP 2=nP. 2
lza I =nPr, el =nPe G20) b ihe rate split, let M = Miyand My = MyoMoMa,
(x1,22) =mp Png}. (52¢)  therefore MoM; My = M{ M}, and

A transmitted codeword x in (52) satisfies, because of (50),

lz* = 211 + 22]? + 221, 2) (53a)
=nP; +nPy+ 2np\/ PP, =nP, (53b)

i.e., codewords in D, (p, P1, P») meet the power constraint
with equality. The codewords are chosen independently uni-
formly at random on their respective power sphere.

c) Threshold Decoders: The channel transition probabil-
ities are W (ylx) = N (y;2,07) , j € [2]. Let Px, x be the
joint distribution induced by the codebook generation, namely

PX2,X (ua m) = PX2 (U)PX|X2 (w|u) (54a)
O([[ull* = nP,)

= d — ) 54b

Sn(\/ TLPQ) ( )

(|l —ul|> = nPr, (x—u,u) —npy/PPs) (54¢)

VP Sy (VT = 2)P)

where the function S,,(-) was defined in (2), which induces

3(lz]|* — nP)
Px(x)= | Px, x(u,x) du = ———— 54d
(@) = [ Prxtwe) du= "L 60
Thus for j € [2] we can compute
Py, x.(ulu) = [ Pxix. (@)W} (yle) da. (i)
Pr,(y) = [ Px(@)W] (wle) da. (54D
for Px|x, in (54c) and Px in (54d).
In the following we shall use the n-fold product of
Qxz,x,y, (U, 2,9) = Qx, (W) Qx| x, (|u)Wj(ylz)  (55a)
ul |0 P, PR P
=N||z|;|0]|,|P¢ P P , (55b)
Y 0 Pt P P+ 032

1 .
Also define the mutual information densities
. . ;
ij2(y;@(my, my)) == —In — : (57)
el i) = Qy, (v)
. . / :
151y, (M, My )| T2(M — 2 1n J ,(58)
],1( (m, ma)| 22 ( 2)) n Qyj‘XQ(me(mé))
; 1. Qv x, [ylza(m)))
ij0(y:@a(my)) == —In Vil Xa 50

Qv (y)
= ija(ysz(mi, my)) —ija (ys 2(my, mh)|@2(m))),

where Q™ denotes the n-fold product of the distribution Q.
We employ threshold decoders. Receiver 1 looks for a
unique pair (mf, mb) € [M]] x [M}] that satisfies

{il,g(m;uma,mg))
/ !
1 2

i (Ya; z(mh, mb)|xa(mh))

>Rll,n+R2n+’y

60
>Ry, +7  (60)

for some +; if none or more than one pair of indices are found
in (60), receiver 1 declares an error. Receiver 2 looks for a
unique m} € [MJ] that satisfies

in,0(Ya;@2(mb)) > Ry, + 73 (61)

if none or more than one index is found in (61), receiver 2
declares an error.

d) Performance Analysis for o € (0,1): The average
probability of error, averaged over the messages and over
the random code construction, is bounded similarity to the
standard typicality decoder [36] as

in0(Ya; X2) > Ry, +7
i11 (Y1 X|X3) > Ry, +7
7;1,2 (E7X) > R/l,n + R/Z,n + Y

€n <1—Pr (62a)

Py



+ KMy Pr [i2,0(Y2; X2) > Ry +7] (62b)
+ Ky MMy Pr [i 2 (Y15 X) > Ry, + Ry 9], (620)
+ KoMj Pr[i11 (Y1 X[ X2) > R, +19] . (62d)

Note that there is no “power constraint violation” probabil-
ity in (62) because we picked the codewords from the set
Dn(p, P1, Py) in (52) to satisfy the power constraint with
equality. In particular we have:

e Eq(62d) relates to the event that the receiver 1 has decoded
correctly the transmitted cloud center but not the satellite. The
probability is computed from the distribution

P3 = PX2 (U)PX\Xz(w‘u)QgﬂXg(yl‘u) (63)
The factor
s 1 + 2’)’1
Ko=27 ()= —— =1L 64
0 ST, (64)

is the penalty for changing the measure from Py, x, to
Qy, |x,> &S proven in Lemma 2. Overall, as proven in Lemma 1
in eq(103), we have

f :1n<n) K
eq(62d) < Koe ™ " =7 7%

e Eq(62c) relates to the event that receiver 1 has not decoded
correctly the transmitted cloud center and the satellite. The
probability is computed from the distribution

Py := Px,(u)Px|x, (x|u)QY, (v).

The factor K is the penalty for changing the measure from
Py, to Q’{,l, as proven in Lemma 3 for j = 1. Overall, as
proven in Lemma 1 in eq(104), we have

(65)

(66)

for ﬂ/:% K1
= N
e Eq(62b) relates to the event that receiver 2 has not

decoded correctly the transmitted cloud center. The probability
is computed from the distribution

P, := Px,(u)Px|x,(x|u)Qy,(y).
The factor K5 is because we changed the measure from Py,
to Q%, as proven in Lemma 3 for j = 2. Overall, as proven
in Lemma 1 in eq(105), we have

for ~=1nn) K
eq(620) < e " IS 2,

e Eq(62a) relates to the event that the transmitted codeword
does not pass the threshold decoder tests. The probability is
computed from the distribution

Py = Px,(u) Px | x, (x|u) W7 (y1|2) W3 (y2|z),

since the noises are assumed to be independent. Overall, by
the multi-dimensional Berry-Essen theorem [26, Theorem 11]
with v = In(n)/2n, we have that the probability on the RHS
of (62a) can be upper bounded as proved in (71) at the top of
the next page. In our derivation we used the first and second
order moments of the information density vector

in,0(Y2; T2 ()
1= il,l(Yl;:c(m’l,m’Qﬂa:g(m’Q)) ,
i1,2(Y1; 2(mf,m}))

eq(62c) < Kie™™ (67)

(68)

(69)

(70)

(72)

conditioned on a given codeword pair (x(m}, m}), x2(mh))
chosen from D,,(p, Py, P»). In (72) we have sums of indepen-
dent random variables of the following type, where Y ; is the
channel output at time ¢t € [n] at receiver j € [2]

2

In Wi (Yjelwe) C o) + 2t — N7y v | GalNja
Qy;1x, (Yje|ut) ! 2(1+ ;) L+ay;’
(73)
1 Wi¥jelze) _ - (i) + Vie = Nje v vl
Qy; (Y1) ’ 2(1+ ;) I+ "
(74)
where we introduced the normalized quantities
Y., —
Ny o= 22 N0, 1), (75)
0j
xe — &u x
i o= 2 St Vjg = L. (76)
g gy

By summing over ¢ € [n] in (76) and with the shorthand
notation (x,x2) for (w(mf,mh)), z2(mb)), we obtain that
the means of the random variables in (72) are

[]|*/oF — ny;

E[ijo(z+ Zj;2)] = C(y) + () (77a)
E [ij1 (@ + Zj; @|xs)] (77b)
| — Exa||? /0% — navy;
=C , J 77
E [ij0(z + Zj;22)] = eq(77a) — eq(77¢), (77d)
and the (co)variances are
nVar [ij’g (w + Z;j; :c)] (78a)
) 2 xl|2 /02
() el s
2\ 1+, n(1+’}/j)2
nVar [ij’l (a; + Zj; w|w2)] (78¢)
C\? |l = €xs? /02
e
2\ 1+ avy, n(1+ ay;)?
nCov [ij2(x + Zji ), ij1(x+ Zj; x|xs)] (78e)
1 oay (x — &z, ) /07 786

751"‘0&’}/]‘1“!‘7]‘ n(l+av;)(1+75)’
nVar [ijo(x + Zj;x2)]| = eq(78b) + eq(78d) — 2 - eq(780),
(782)
nCovliy g, (-++)yige,(-+-)] = 0,Y(€1,£2) € [0: 23, (78h)

where (78h) follows because the noises at the two receivers
are assumed to be independent. Thus, the information density
vector in (72) has mean E[i] = p(a) + p(@2, ) with
C(v2) = Clane)

C (CWl) )

Cm)
[zl?/o5—ny2 _ |lz—fxa||® /o5 —nay:

n2(1+v2) n2(1+avyz)

- lz—¢®2|?/of —nam
N(:l:?’m) T n2(14+avy1) )

lz||?/o% —nv
L n2(1+71)

(79a)

(79b)




We now upper bound the probability in (62a) for a fixed pair (x3, ) as
i20(Y;22) b+
Pr| iy (Yizles) | — ple) — p(xe, @) > ity | = (@) - p(z, ) (71a)
Z'1,2 (Y, :13) ll,n + R/Z,n + FY_
[ 2,n + Y 1 B
>Pr|Z>n 107 —Vnp(a) = Vap(xs, ) o (71b)
/
L Thyn t 1 ZaN (05 V() +V (2,))
o T B
=Pr|Z<—-vn Tn T +vnp(a) + vVop(zs, ) - = (71¢)
/ + R +7 \/ﬁ
L 1,n 2,n Z~N(03;V () +V (z2,x))
ln(n) /
1,22 1,02 2,n 1 B
e D) g (R i) - 20 v | - 2 71
2yn vn
+ R2,n
where the vectors p(a) and p(xo,x) are defined in (79a) and (79b), respectively; where the matrices V' (a) and
V(xs,x) are defined in (80a) and (8), respectively; where in (71b) we used the multi-variate Berry-Essen theorem,
with B a bounded constant that is specified in Lemma 4; and where the function ¥(-,-) was defined in (3). We note
that any (1, x2, ) € Dy (p, P1, P2) satisfies p(x2, ) = 03, and V (2, ) = 0343

and covariance matrix nCov[i] = V(o) + V (23, x) with

_ [ Va(e) O
V(Oé) - |: 0 ‘/*1(0[):| ’ (808.)
Va(a) := [V/(ay2,72)] , (80b)
(a1, av1) V(CV’Yla’Yl)]
V; = 80c
(@) |:V(a'717'71) V(v1,71) (80c)
for V/(-,-) and V(,-) defined in (21a) and (7), respectively,
and
Vg,11 + U222 — 2212 0 0
V(xz, ) := 0 v vz, (80d)
0 V1,12 V1,22
x — Exo)|% /02 ;
Vi1 = le = &asll"/oj _ ar , (80e)
’ n(l+ avy;)? (1+ ay;)?
(/0% 7
99 1= — , 80
T A (e oo
(x — &xo, ) /07 ay;
Vj12 = I — 15 . (80g)

(1+ay;) (1 +)
p(xe, ) = 03, and

n(l+ay;)(1+7;)
By construction, every codeword satisfies
V(ZL'Q, CE) = 03><3.

e By combining everything together, we obtain the relation-
ship in (81) at the top of the next page. The set Qi (g5 V()
in (81c) for the block diagonal covariance matrix V()
in (80a) can be written as

Qiny (55 V( {a ER3:Pr(Z < a] >1-—¢c} (82a)
- {a c R3 ca; = —/[V(@)]aQ Ye), i €3], (82b)

for (€10, €11, 62) € [0,1)? that satisfy (82¢)
1-e<Pr[Gi <Q )], o (82d)

-Pr[Gy <Q ' (e10),Gs < Q' (enr)] [52]~n(0.[11]
’ (82¢)

=(1- 62)F(61o,€11;T)}7 (82f)

where F(eqg, €11;7) was defined in (24). To complete the proof
the R’ values are replaced by their rate split equivalents as
defined by (48) and (49) and Fourier Motzkin Eliminiation
is performed. This proves the achievability of RSUP)(n, ¢)
in (20) for « € (0,1).

e) Performance Analysis for o« = 0: Here the step in the
above derivation where we used the multivariate Berry-Essen
theorem does not hold because the 3 x 3 covariance matrix
V(0) (from V() in (80a) evaluated for ov = 0) has rank 2.
In this case, our scheme reduces to a standard point-to-point
codebook on the power sphere, that is ||z (mg,m1,ms)||? =
nP for all (mg, m1,ma) € [Mp] x [M1] x [Mz], and where
each receiver j € [2] looks for the triplet (mg,my,ms2) that
satisfies i;5(y;; x(mo, m1,ma)) > Ry, + Rj, + 7. The
analysis proceeds as done for a € (0,1), except that the
information density vector has dimension 2 rather than 3.
The resulting region is as in (20) for the choice 5 = 1,a =
0,(1 —€11)(1 — e2) = 1 — ¢ (here €19 does not matter).

f) Performance Analysis for a = 1: Here too the 3 x 3
covariance matrix V(1) (from V() in (80a) evaluated for
a = 1) has rank 2. In this case, Rg = Ry = 0. Our
scheme reduces to a standard point-to-point codebook on the
power sphere, that is, ||z(m1)||> = nP for all (m1) € [My],
and where receiver 1 looks for an index m; that satisfies
112 (yl; a:(ml)) > R’Ln +7. Receiver 2 does not do anything.
The analysis proceeds as in the point-to-point case. The result-
ing region is as in (20) for the choice f = 0, = 1,610 = ¢
(here €17 and €5 do not matter).

A. Extension to K users

For simplicity, we only consider private rates and no split-
ting here. WLOG we assume v, > v > ...7vx > 0.



l2,n -C (72) +C (O"Y?)

where for (81a) the function (-,

Lemma 5 proved in Appendix C].

The probability of error, averaged over the random code construction, can be bounded as

_In(n)
€ <1—-T | —/n 1 — Clam) 1 Vi) | + < g, (8la)
50— C(72) + C(ae)
2.n
— 10— Clam) + h;(n) e Lam (g _Br K TRt K V(a)> (81b)
; C(v2) — C(ae)
2,77, 1 1
— In € C(am) + ﬁQm (g;V(a))+ 0O (117(1”)) . (8lc)
Rll,n + RIQ,n C (’Yl)

-) was defined in (3), for (81b) the function Qi (+; ) was defined in (5), the covariance
matrix V («) was defined in (80a), and where (81c) follows from the continuity of Qjyy (&;

to meet constraint
in Definition 2

B+ K+ K+ Ky

-) in & proved similarly to [26,

a) Capacity Region: The capacity region C of the K -user
degraded BC X — Y; — Ys... — Yg_1 — Yg is attained
by superposition coding, where the K levels of superposition
satisfy the Markov chain

Uk - Ug_1— ... U — X. (83)
For the AWGN BC, we have
C:U{(Rl,Rg,...,RK)eRf:Vk;e[K] (84a)
Re<Cwd ac)=Clu Y ar)}  @4d)
Le(k] lelk—1]
where the union in (84a) is over the “power splits”
(a1, ...ak) Koy ar=1. (84c)

Le[K]

The capacity region in (84) is attained, for example, by
mutually independent Uy, ~ N (0,arP),Vk € [K], and
X = Zke[K] Uy in (83) such that (84c¢) holds.

b) First-Order Superposition Coding Region: Consider
a fixed (aq,...ak) as in (84c). In order not to clutter the
notation next we omit to explicitly state the dependence on
(a1,...ak) of various quantities, unless necessary or not
clear from the context. For the purpose of developing a second
order region, we write the capacity achieving superposition
coding region with Gaussian input, where user j € [K] jointly
decodes all the messages intended for the users indexed by

{j,j+1,...,K}, as follows
RK+RK71+...+RJ' SIj,K_Ij,jfl
Rg-1+...+ R; <ILig1—1jj
Njelx]
Rj1 + £ <UTjje1 =1
R; <Ij;—1Ij;-1
(85)

where I, is the mutual information at receiver j € [K] to
decodes the messages indexed by {1,...,¢} : £ € [0 : K]

after having removed the effect of the messages indexed by
{+1,...,K}, that is,

L= I(X;Y5|Uf) = C(’Yj > ak),
ke[l

(86a)

with the convention that I; o = 0 and U£ , ; = (), which satisfy

0=1Ijo<Ij1<Ijs...<Ijx = C(y) (86b)
We next we aim to find a second order region for (85).
¢) Random Codebook Generation: For (aq,...ak) as
in (84c), define
Dnlay,...,ak) = {(a:l, c TR, T) € RE+D™ . (87a)
x = Z x, (87b)
ke[K]
(@, x0) = 6(C — ) na; P, V(5,0) € [KP}. (87¢)

As in Footnote 1 for the two-user case, we choose the sub-
codeword xj independently and uniformly at random on the
power sphere S,,_kir(v/napP) and mutually orthogonal.
The resulting transmitted codeword in (87b) meets the power
constraint n P with equality. This construction aims to mimic
a choice of independent Gaussian Uy, ..., Uk in (83).

d) Threshold Decoding: Define auxiliary distributions

Qje(ylves, ... vk N(y, Z Vi, 05 +PZ Z),
E[L+1:K] iclf]
(88)
for (j,¢) € [K] x [0 K], with the convention }_; 1 @i =0

; = 0; with this we have
W; (y’ Z vi).
i€[K]

In(n)/2n. Receiver j € [K], upon receiving y;, looks
mK) € [MJ] X [Mj+1] X ... X

and Zze[K—O—l KU

Qj,O(y|Ula-~-7UK) - (89)

Lety =
for a unique (m;,mjy1...,
[Mk] such that

Rj+...+Rg>ij,g('yj)— s K,

(90)

ijj—1(yj) +v, VL)



where—omitting message indices for readability—we defined

‘ 1 Wi (Y |z")
ij(¥;) = —In Qr (Yilz) ... x%) — 91)
e) Performance Analysis: Define
Pie =7 Y ai, (92a)
1€{)
which satisfy
0=Pjo<Pjp<...<Pjx =7 (92b)

The analysis proceeds as for the two-user case but with
information density vectors of larger dimension. For receiver
j € [K], consider the (K — j + 2)-dimensional information
density random vector

lij,—1(Y5)5 25,5 (Y5)5 -3 45,k (X)),

whose mean vector and covariance matrix conditioned on
a transmitted codeword from D, (aq,...,ax)-omitting to
explicitly state the conditioning for readability—have entries

(92c¢)

Elije(Y;)] = C(Pje); (92d)
nVarlij o (Y;)] =V (Pje); (92e)

nCovlije, (Y5),ij.6,(¥;)] = V (Pjmin{er 62} Pjmax{erta}) »
(921)
92¢g)

Next, for receiver j € [K], from the means and covariances
in (92), we evaluate the mean vector

nCovligr, (Ya), b6, (¥5)] =0, a #b.

E[’L]] = [J,j(Oél,...OéK), (933)
and the covariance matrix
nCov[i;] = Vj(aq,...ak), (93b)

of the (K — j + 1)-dimensional random vector
iy = [i5,5(Y5) = i55-1(Y5)5 55, (Y5) — 45,51 (Y5)];
(93¢)
whose entries satisfy

Elijo(Y;) —ij,-1(Y;)] = C(Pje) = C(Pjj-1), (93d)

and for j — 1 < min(¢y, ¢2)

nCovlije, (Y;) —ij,j-1(Y5), 15.0,(Y;) —ij-1(Y;)] (93e)
=V (Pj,min{ll,éz}a Pj,max{fl,ég}) + V (Pj,j—l) (93f)
= V(Pjj-1,Pje,) =V (Pjj-1,Pjs,)- (939)

Finally, for independent noises (i.e., block diagonal disper-
sion matrix), we obtain that the following second order region
is achievable with block-length n and global reliability €

U N {(Rl,Rz,...,RK)eRf: (94a)
ek @<l jE[K]
jelx (1—€j)=1—€

Ry +Rxg_1+...+R;
RK,1+...+RJ

Euj(al,...aK) (94b)

ijl + Rj
J

1
+ %Qinv(ej; ‘/j(ala v aK))} + Oln(n)/n17

where the constrai.nt > (k] @ < 1 represents how power is
allocatefi across private messages and H jexy(l—¢) =1-¢
how reliability is allocated across receivers.

(94c)

Remark 10 (On Per-User Error). Without the optimization
over Hje[K](l —€;) > 1 — ¢, the region in (94) is achievable
with per-user average error probability bounded by ¢; for
receiver j € [K]. With per-user error, all K! superposition
coding ordering should be considered. ]

Remark 11 (On Rate-Splitting for the K-user Case). The
challenge with rate splitting is that the complexity of the opti-
mization problem and Fourier-Motzkin elimination explodes
exponentially in the number of users K. To see this, let
Ws denote the message intended for the receivers indexed
by & C [K]. In principle, any rate splitting can be obtained
by augmenting each message Ws with the parts of the other
messages that we require the users indexed by S to decode.
For the degraded BC, superposition coding is optimal and
this is the strategy that we have investigated in our multi-
user extension. Consider the case of K = 3 users, where
the receivers are ordered according to the Markov chain
X — Y1 — Yy — Y3; capacity is achieved by superposition
coding in the following order

Us'(W3) = Uy (W3) = U (W) = X", (95)
Wi = (W23, Wiasy, Wyzsy, Wisy) (96)
Wy = (Wit ,2y, Wiy 7
Wll = (W{l}). (98)

This Markov chain structure of superposition coding suggests
that we could rate splitting as follows

U?:L(Wé,?ﬂ W2/,37W1,,3) - UQn(Wzl,QaW{g) - UF(W1/1) — X",

(99)
Wi = (Wi3 WiWi,) (100)
Wy = (W35, Ws5,) (101)
W3 = (W) (102)

but as one can see the problem quickly becomes very complex
as K increases. How to “tame” the complexity of the super-
position coding with rate splitting for general K is outside
of the scope of this paper and we leave this for future work.
Regardless of the difficulty, one can see that the projection of
a K user achievable rate region onto a subset of two users
only will coincide with the two user rate region as presented
in this paper. That is, one can easily specify a K user channel
in which rate splitting will be required to achieve the largest
known achievable rate region. ]



VII. CONCLUSIONS

In this paper we provided achievable and converse second
order rate regions for the SISO AWGN BC with both global
and per-user reliability constraints. In addition, for the two-
user case, rate splitting is shown to enlarge the achievable
region for a large set of channel conditions. Surprisingly, rate
splitting is only required to achieve CCP, that is, to have all
information bits encoded into a single codeword. Extensions to
the K -user case were discussed. We note that our construction
utilizes codewords on the power shell, which achieves a lower
dispersion than utilizing an i.i.d Gaussian codebook. The
second order terms in our achievable and converse regions
do not match. Tightening the converse bound and enlarging
the achievable bound (by considering for example Marton’s
coding for the finite blocklength) are part of ongoing work.

APPENDIX
Lemma 1 (Han-type bounds). Similarly to [37] we have

1 wrwX 1
pr |t TUX) Ly
n Vilx M|X2) " n
Hes PX?’XQ;&HXQ
(103a)
_ / Px, x (u, @) QF, x, (ylu) dudzdy  (103b)

n
(u,z,y): % In %>% In(M7)+~

1\X2<y‘
S/\

—ny

e
Px, x(u,®)——

— W' (y|x) dudedy (103c)
M

() S5 >3, (o)
e ™
< . 103d
<7 (103d)
Similarly
1 (Y| X 1 -
Pr {mvvln(ll) > ln(M{Mé)-l-’y} < %,
n ¥, (Y1) n Px, xQY, MM,
(104a)
and
1. QF |X (Y2|X3) 1 e "
Pri—In—22_——" > —In(M)) +~ < .
n Y — M/
QYQ( 1) n PXQ.XQ?/,‘, 2
(105a)

Lemma 2 (Constant Kj).

Py, |x, (y|u) me 1+ 2
sup  —————— <274/ ———— = Kj.
u€eR” yeR” Qy1|X2 (y‘u) 8 \ 1+ 471
(106)
Proof of Lemma 2. Our proof is similar, and leverages
the results of [20]. Codewords are chosen from the set
D.(p, P1, Py). By the spherical symmetry of the system and
by a rotation of the coordinate axis, we can take WLOG

xo(mb) = (0", /nPy). (107)
By the code construction defining D,,(p, P, P;), we have

w1 (m},mh) = (a"~"(m)), py/nPr), (108)

with a"~1(m}) drawn uniformly at random from the power
sphere S,,_2(1/n(1 — p?)Py). The transmitted codeword is

@y (mh, mbh) + wa(mb) = ("1 (mh), E/nPy),  (109)
or equivalently,
x(mf, my) — Exa(my) = ("1 (m), 0). (110)

Recall (1—p?)P; = aP from (51). Therefore, from (109), we
see we can decompose Py, |x, (-[(0"",v/nP,)) (obtained by
averaging over the distribution of a™~*(m/)) into the product
of two distributions: (i) the first n — 1 coordinates have the
distribution induced by the uniform distribution on the power-
sphere at the output of a point—to—poiglt Gaussian channel with
average SNR per channel use "((i%fl’)i? = “gav;; and (i)
the last coordinate is N (£v/nPs, JJQ»).'From (55d), the refer-
ence distribution Qy, X2(~|(0”_1, vnP,)) is jointly Gaussian
with mean £xo(m}) and covariance matrix (crjz« +aP)I,, that
is, (i) the first n — 1 coordinates are i.i.d. N'(0, o*?- +aP), and

(ii) the last coordinate is N (£y/nPs, O'JZ» + aP). Therefore,
Py, x,(y|(0" 1, v/nP))

n (111a)
¥ 1x, (Y07 Vi P))
o N(mitvnPso) (111b)
= N (yn; €VnP2, 03 + aP)
N (yn—l; 0”_17 (0'32 + nilaP)Infl)
. 111c
N(yn—l;on_l,(o? +aP)In—1) ( )
s 1 +£n
Ly [Tt (111d)
BVI+2nle, om0y
14 2v;
C1.veea w1+ 2y (111e)

g 1+ 4’7]' ’
where (111b) is the contribution of the last coordinate,
where (111d) is from [20, Eq. 104], and where (111c) is to
account for the average SNR per channel use equal to "5 a;
on the first n — 1 coordinates, as opposed to ay;.

Lemma 3 (Constants K’s).

 Py(y) e ke

gy ST s Ty, IR

Proof of Lemma 3. Let v; = P/U?. In [20, Eq. 43] it
was proved that that (112) holds for (a) Py; is the distribution
induced by the uniform distribution on S, _;(v/nP) at the
output of a point-to-point Gaussian channel with average noise
power sz., and (b) QY (y) is the i.i.d. Gaussian distribution
with zero mean and variance 0% + P = o7 (1 4 7;). In [26]
it was shown that our superposition code construction induces
the uniform distribution on S,,_; (v/nP), and thus (112) holds
to our AWGN BC scenario as well.

(112)

Lemma 4. The multivariate Berry-Essen [26, Theorem 11, for
d = 3] states that for all convex, Borel measurable subsets of
Ry, we have that the constant B in (81) satisfies

]{332’

B <
VI (Dnin(V () + V(z2,2)))

7 (13



kg = 42d"* + 16 from [38] for d = 3,
where z := %Zte[n] E [(67'6,)*/?] for

(114)

(1-N2 )y 422ENay  (1-N2 oy +2 7720 N,
2(1+72) 2(14oay2)
(1*Nf,t)a71+27zt_flz2’t’ Ni ¢
2(14av1)
(1—N12,t)’71+2;%N1,t,
2(1+71)

9t =

(115)

Note, that while [38] only directly applies to N'(0,1), methods
similar to [19, Corrollary 8] can be applied for general
covariance matrix V.

Proof of Lemma 4. For terms with Ny in 676;:
(a1N2 + blN + 61)2 + (QQNZ + b2N + 62)2
b? + b2

< max (a% + a%, 1

) (V1)
= 2 (IN]+ 1),
For terms with N5 in HtT 0,:
(asN? + b3 N + c3)?
< max(las|?, ([b3]/2)?, les])(IN] + 1)* =: ¢* (IN|+ 1)
Therefore

= S E[0F0)),

te(n]

1
<2 S R[(R0N+ 0t (Ve + 1)),
ten]

5

2

n

IN

ST E[I£P(NL + 1) + [geP(IN2e| + 1)

te[n]

@690V

[fel? + 1gel?),
te[n]

(16 + 94V2TVE S~ 12y g, 2y,

ten]

since in general, for 0 < r < p we have (3, |z;|P)Y/P =
1 1
lzll, < x|l < dr 7| ||, thus for d =7 =2 and p =3

Va+y? <2575 (|2 4 [y, (116)
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