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Abstract—Most deep-learned error-correcting codes (DL-
ECCs) use binary cross-entropy (BCE) between the true input
bits and the soft decoded outputs of the learned encoder/decoder
pair as a loss function during training. It is known that this
decomposes into two terms which in the case of a DL-ECC
correspond to: a Kullback-Leibler (KL) divergence between
the true and estimated posteriors on the input bits given the
noisy channel outputs, and the conditional entropy (CE) of the
input bits given the channel outputs. We use this decompo-
sition to explore the training process of one particular DL-
ECC termed TurboAE, which replaces constituent codes in the
encoders/decoders of a Turbo code with learned convolutional
neural networks. Evaluating each term in the BCE decomposition
of TurboAE is facilitated through the junction tree algorithm for
exact inference on graphs, yielding a MAP decoding of TurboAE-
like codes of up to 40 input, 120 output bits (vs. the original 100-
bit inputs). Plots of this decomposition over training offer insight
into the alternating training process used in TurboAE and other
DL-ECCs. We add to the growing body of work on interpreting
DL-ECCs by providing a new lens through which to view any
DL-ECC training process that uses BCE as a loss function.

I. INTRODUCTION

Applications of neural networks to error correction, while
partially explored decades ago [1], have seen substantial
recent developments [2]-[4]. Literature on deep-learned error-
correcting codes (DL-ECCs) falls into two categories: (1)
development of techniques to “learn” the encoders, decoders,
or both, of error-control schemes, and (2) interpretation of said
techniques through theoretical and empirical lenses. This work
falls in (2), as we will present new tools for interpreting the
training process of one DL-ECC termed TurboAE [3|.

TurboAE [3] is a rate 1/3 Turbo-like architecture in which
the three constituent codes are replaced by learned convolu-
tional neural network (CNN) based encoding blocks, and the
BCIJR decoder is replaced by a somewhat iterative learned
CNN decoder. All parameters are learned in an auto-encoder-
like framework with binary cross-entropy (BCE) as a loss
function, and with noise in the middle to simulate the noisy
channel. The performance of TurboAE mimics that of good
Turbo codes at low SNRs on AWGN but exhibits a degree of
robustness to the knowledge of the noise statistics.
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On the interpretation side, the literature is sparser. [5]]
explores both the principles guiding approaches for learning
error-correcting codes as well as some analysis of the re-
sults of such methods. [6] explored methods for interpreting
TurboAE through exact (non-linear) and approximate (linear
convolutional codes) representations of the constituent learned
encoders, which can be paired with BCJR decoders to look at
the benefit of the learned (versus classical) encoder and/or
decoder. This line was further studied in [[7] along with more
technical details of TurboAE, like the irregularities imposed
on the encoder via zero padding. [8] instead looked at the
training dynamics through the Fourier lens and proposed the
Goldreich-Levin algorithm to quickly determine the dominant
encoder Fourier coefficients.

A. Contributions

The authors in [§] re-examined the decomposition of the

binary cross-entropy (BCE) loss function, using it as inspi-
ration for an alternative (non-neural) optimization algorithm
for learning ECCs. This work further explores potential uses
of this decomposition, this time as a lens to understand the
optimization dynamics between neural encoders and decoders:
(1) We first present a BER-optimal algorithm to decode rate
R = 7}‘; = % Turbo codes for input length £ = 40 (versus
the original k£ = 100) using the Junction Tree algorithm [9].
While discussed before [[10], [11]], ours appears to be the first
practical implementation for decoding Turbo codes.
(2) The well-known decomposition of BCE into two terms
provides insight into the training process used by TurboAE
(and any learned DL-ECC using BCE as a loss): one term
depends on both the learned encoder and decoder (Kullback-
Leibler divergence (KL) between the true posteriors and the
estimated posteriors on the input bits given the channel out-
puts), while the other only depends on the learned encoder (the
conditional entropy (CE) of the input bits given the channel
outputs). We explore the interplay between these two terms
during the neural network training process, in the flavor of
[12]. By plotting the two terms in the BCE, we are able to
see how the optimization is dominated by a particular stage
during different broader phases of the alternating training (see
Section [[I-A) used. Evaluating these two terms for a learned
decoder is enabled through the junction tree algorithm.



II. PRELIMINARIES
A. TurboAE

The DL-ECC called “TurboAE” [3]] has an architecture that
resembles a rate R = % = % Turbo code at the encoder: it has
three “constituent codes” replaced by CNN blocks fée)() as
in Fig. |l (from [8]]) taking a sequence u of k& = 100 bits, and
outputting three 100-bit sequences x4p € {£1}' for each
block b € [3]. These three blocks are then concatenated to
produce codewords of length n = 300. Here 6 represents the
CNN weights or parameters. The network has two versions,
TurboAE-Cont (with real-valued encoder outputs, performing
coding and modulation tasks jointly) and TurboAE-Binary
(with Boolean encoder outputs). The power control modules
and edge effects discussed in [7] are omitted. The TurboAE
decoder architecture replaces the (in this case 6) iterations
of the BCJR decoder by soft decoder CNNs gt( 1), gE 2) for
iteration ¢ € [6] as in Fig. I Note that y, = Xagb + Zb,
for zy, 1.i.d. Gaussian noise of zero mean and variance o, for
each stream b € [3]. The CNN parameters  are obtained
through an alternating training procedure: the decoder is held
fixed while the encoder is trained for a number of gradient
descent steps, then the encoder is fixed while the decoder is
trained for a number of steps; this process is repeated until
convergence.

The TurboAE-Cont encoder is a binary input, real-output
sliding window code of window length 9 (memory 8), meaning
each output depends on 9 consecutive binary inputs (ignoring
edge effects [7]), and delay 4, meaning the window for each
output contains 4 future input bits. TurboAE-Binary has simi-
lar input dependence but outputs binary values instead of real
values. In [6] it was found that TurboAE-Binary’s encoders
actually only depend on 5 inputs, instead of 9. This property
was used to obtain simpler non-linear and approximate (affine,
or parity) representations of the CNN encoders (8| Table I, II,
Appendix]. Here we further this investigation of TurboAE by
looking at the binary cross-entropy (BCE) loss and how it
evolves over the alternating training procedure.

B. Decomposition of BCE

Consider optimizing an encoder function f(?) : F¥ — R,
where f(®) = {fb(e)}be[g], parameterized by § € © C R™
for some m € N. We take U ~ Unif[F5] and Y € R"
to be random variables representing the input and received
(channel output) sequence, respectively. Note that Y depends
on 6. We can similarly parameterize a soft decoder ¢(?) :
R™ — [0,1]*, where g() represents the iteration of functions
{ggl)}te[fi],se[Q] described in Fig. |1} for parameters v € I' C
R! for some I € N. These encoder and decoder parameters are
then ideally found as solutions to the optimization problem:

Problem 1. Find € ©,v € T so f©, ¢ minimize the
expected BCE, C(f(9,¢™), where
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Fig. 1: Rate R = % (u € F3*, xapp € {£1}'%°) TurboAE-
Binary encoder and decoder structures. The parameters of the CNNs

(9), gt(”*s) are trained. The noisy channel outputs of the three encoded

streams XAFE,1,XAE,2, XAE,3 are given by y1,y2,ys. The decoder
produces probabilities @1 that each input bit is 0 or 1. Here p
represents prior information and q represents posterior information
from each CNN iteration.
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The decomposition in the last line is well-known, but it has
extra pertinence to optimizing DL-ECCs as noted in [5]], [8]].
For a given encoder (), its bitwise MAP decoder achieves
the minimum 0 of E[Dgp(P[U; = 1|Y<9>]||g (Y ©))].
Furthermore H(U;|Y(?)) only depends on f(?), not on g(?).
Thus, we can think of BCE optimization as the management
of two components: (1) optimality of the decoder for a fixed
encoder (KL term), and (2) quality of the encoder for the
channel (CE term).

Using bit error rate (BER) as a loss function might be more
desirable, but the differentiability of BCE allows for gradient
methods to optimize the DL-ECC parameters. Unfortunately,
[8] showed that a BCE-optimal DL-ECC is not necessarily a
BER-optimal DL-ECC, though tight connections exist [S].

The BCE and its decomposition have additional value
beyond their connection to BER. The decomposition allows us
to study the dynamics of the alternating training scheme in [3]].
Unfortunately, even though BCE is easy to estimate via Monte-
Carlo methods, both E[D 1. (P[U; = 1]Y®]||g" (Y (©)))] and
H(U;|Y @) (equivalently, mutual information) are not. There
is a significant line of work investigating both parametric
and non-parametric approaches to this estimation problem
[13]. We present a more direct approach to computing the
decomposition terms. Leveraging the fact that MAP probabil-
ities for Turbo codes can be computed via inference over a
factor graph, we can apply the junction tree algorithm [9]]
to explicitly compute the optimal soft decoder. If gx@ is
the optimal decoder, (g*gl( (9)) == P[U; = 1|Y)]), then
E[Dg L (P[U; = 1]V 9)]Hg(9 (Y())] = 0 for all i € [k] and

U;) log(1 — g0 (Y @))] (1)

Ui = 1Y @)1 (v )] + H(U; [y @).
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From this, we can then infer both terms in decomposition (T).

III. JUNCTION TREE INFERENCE ALGORITHM

We propose to use the junction tree inference algorithm [9]
to obtain a MAP decoder for a given Turbo code. Specifically,
we follow the relevant algorithms in [9, Ch. 9, 10].

Nonrecursive Turbo codes determine a factor graph over
our input bits U; for ¢ € [k]. Specifically, we are interested in

computing P[Y(®) U; = u] for u € Fy, from which we can
obtain the desired P[U; = 1|Y(9)]. For a nonrecursive convolu-
tional code with w1nd0w w and delay d, this probability factors
into the sum-product €FE Ui H?:l P[Y]@), Usina] for
memoryless channels, where wind :=j —w+1+4+d:j+d.
Here we take U; := 0 for [ < 1 and [ > k. For a Turbo
code, the interleaver 7 introduces additional factors. The new
factorization is then,

k
> I,
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2
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@96 Y denotes our noninterleaved received data and
Y’ our interleaved received data (taking w(I) := [ for
l < 1,1 > k). This factorization defines a factor graph, where
nodes represent each U; for j € [k], and two nodes have an
edge if and only if they appear in the same factor. Naively
evaluating equation would result in O(k2¥) operations for
a fixed rate, infeasible for k 2 26. However, carefully applying
the variable elimination algorithm to break the sum up and
marginalize over each U; one at a time can drastically decrease
the complexity [9]]. This observation forms the crux of the
junction tree algorithm. Note that as we marginalize over each
U;, we will need to keep track of intermediate factors that may
grow to include variables linked to U;. In a convolutional code,
intermediate factors do not grow by more than one variable
if we eliminate variables sequentially, explaining why BCJR
(with convolutional codes) has a runtime of O(k2"). However,
with an interleaver, more than one variable is usually added
to our growing factors with each elimination.

The runtime of the variable elimination algorithm depends
on the largest factor. Finding the optimal elimination order
is equivalent to finding a minimal chordal completion of the
factor graph, an NP-complete problem [14]]. However, [9]
describes several greedy heuristics that can be used. Fig
shows how the maximum factor size grows with the input
block length (k) using these heuristics, averaged over many
interleavers. Additional encoder-dependent tricks can be used
to lower the maximum factor size; we are able to optimally
decode nonrecursive window 3 turbo codes up to k = 80.

If we apply variable elimination to compute equation (2)),
we only compute P[Y(?) U;] for a given i € [k]. To compute
for all i« € [k] we would need to rerun the elimination &
times. The junction tree algorithm is an extension of variable
elimination that allows us to compute P[Y(?) U;] for each
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Fig. 2: Maximum factor size in the junction tree vs. input block
length k and window w. The average was taken over 10 different
interleavers. Junction tree decoding is exponential in runtime and
memory in the maximum factor size.

i € [k] without having to redo intermediate computations.
The trick is to note that an elimination order also induces
a junction tree (also known as clique tree) [9], where nodes
are clusters of variables U; so that each cluster does not split
a factor, and if two clusters, C' and C’, share a variable, then
the variable is in all clusters along the unique path between C
and C’. With this tree, we can run Pearl’s Belief Propagation
algorithm [15] to compute joint posterior probabilities on all
the variables involved in a cluster. Then we marginalize to get
the posterior on the variable of interest. Since each cluster only
contains a subset of the variables, we will marginalize over a
much smaller set of variables compared to the naive approach
described earlier. A single variable may be in multiple clusters,
in which case marginalizing over any cluster will produce the
same result.

Fig |3| shows different examples of the resulting junction
trees, coloring the nodes based on the number of variables
involved. For the interleaver of Sec. the junction tree is a
single line, but in general more interesting junction trees can
emerge, as shown. Larger clusters tend to be in the center.

While authors have noted that this approach can be used
[10], in particular for block codes [11]], [[16], this is the first
implementation for optimal turbo decoding we are aware of.

IV. TRAINING DYNAMICS VIA BCE DECOMPOSITION

In end-to-end learned encoder/decoder pairs it is important
to understand the impact of the encoder versus the decoder,
and whether these have been successfully trained. We propose
to use the two terms in the BCE decomposition to elucidate the
training: 1) the KL between the true and estimated posteriors
on the input bits given the channel outputs (encoder and
decoder dependent), and 2) the CE of the input bits given the
channel output (encoder dependent). This direction is remi-
niscent of [12]’s “Information Bottleneck for Deep-Learning”
where the training process of a deep neural network (DNN)
which classifies inputs X as Y is analyzed by looking at two
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Fig. 4: Left: two terms in BCE decomposition (I) during training
at SNRs 0, 1, and 2 of the £ = 40 version of the newly trained
TurboA dark colors are the start, yellow is the end of training.
Also plotted are the final trained points of the original TurboAE-Cont
and TurboAE-Binary from [3]], with decoders fine-tuned for k = 40.
Right: total BCE during training, same colors.

quantities as the network is trained: the mutual information be-
tween the input and hidden layers, and the mutual information
between these hidden layers and the output (classification).
They interpret the phases of the training using these metrics.
While both the setup and metrics here are different, this
idea offers a glimpse into the training dynamics, particularly
of the alternating training proposed in [3]. We believe this
decomposition can provide insight in general into the training
process under BCE for DL-ECCs.

The ”X” points have estimated KL-Divergence negative because it appears
that the junction tree decoder was not optimal for those epochs. This is likely
due to numerical imprecision. Further investigation is needed to confirm this.
The points should be treated as Dy, = 0.
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Fig. 5: BER comparison of rate 1/3 codes: benchmark Turbo 155-
7 code (blue), a learned £ = 40 code with the optimal junction
tree decoder (green) and with a learned decoder (yellow), original
TurboAE-Binary (red) and TurboAE-Cont (brown) from [3], with
decoder fine-tuned for £ = 40, and their encoders paired with optimal
junction tree decoders (purple, pink).

We study a variant of TurboAE-Cont with input length
k = 40 rather than 100, due to the intractability of using the
junction tree inference algorithm at higher input lengths. As
noted in [6], TurboAE-Cont is a window w = 9 nonsystematic
convolutional code with delay d = 4. While much of the
details remain the same as the original TurboAE-Cont [3]], we
make a few minor changes to otherwise improve the training
and interpretability: (1) we perform padding on the input to
eliminate edge effects [/, (2) we pad with —1 rather than
0 since TurboAE-Cont takes inputs in {+1}, and (3) we
directly normalize the output table of TurboAE, rather than
using batch-level statistics, for power normalization. Using
this TurboAE variant, we train at £k = 40 for 800 epochs.
Each epoch consists of training the encoder for 25 steps and
the decoder for 125 steps (the alternating training procedure)
over input batches sampled IID from Unif[{41}*]. Like in 3],
we train the encoder at SNR 2.0, and the decoder at a range
of SNRs from -1.5 to 2.0. We train with batch sizes of 500,
then 1000 for 100 epochs each, then a batch size of 2000 for
the remaining epoch

Both the cross-entropy and decomposition metrics of the
trained model can be viewed in Fig [ Purple designates
earlier epochs of the training, and yellow later epochs. Each
dot on the left panel of Fig 4] corresponds to a measurement
after 8 epochs, with the top-rightmost dot corresponding to
the initialization. On the right panel are the corresponding
cross-entropies during training. We produce measurements at
SNRs 0, 1, and 2. Note the zig-zag pattern in the evolution
on the left panels. During training, there is a back-and-forth
between improvement of the decoder, and improvement of the
encoder, sometimes at the cost of additional KL. This back-
and-forth” is not the same as the alternating training process.
Here the “back-and-forth” evolution is happening on the scale

2All code has been made publicly available at https:/github.com/
tripods-xai/istc-2023| for reproducibility.
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of hundreds of epochs. A single alternation in the alternating
training process is one epoch.

The right-hand panels tell a complementary picture. Notice
how the training evolves in “spurts”. Optimization appears
to be stuck in a saddle point for sometimes hundreds of
epochs, until it suddenly improves fairly rapidly, only to
get stuck in another critical point. Aligning these sudden
improvements with the evolution on the left-hand side, we
see they correspond to sudden improvements in the encoder,
as evidenced by movement leftward along the CE (x-)axis.
Following improvement in the encoder, there is a quick
fine-tuning of the decoder, as evidenced by the downward
movement along the KL (y-)axis. From this it follows, the
more difficult part of the optimization process is optimizing
the encoder, as improvement in the encoder is what it takes
for the DL optimization to move out of its saddle point.

We also added the decomposition and BCE of both
TurboAE-Cont and Binary, with the decoder fine-tuned for
k = 40 to Fig 4} These codes tell a slightly different story.
They have much lower CE, but their KL is significantly higher
than our trained code. These codes were originally trained at
k =100 in [3]], which may explain their lower CE.

Finally, to situate our learned code amongst the other bench-
marks, we estimate its BER at various SNRs, shown in Fig 5}
along with those of our benchmarks. The neural benchmarks
are the original TurboAE codes in [3] with the fine-tuned
decoder described above. Our learned code is significantly
better than the original neural codes below SNR 1.5. Fig H]
explains this nicely. The original codes have better encoders,
but suboptimal decoders compared to our trained code. At
lower SNRs, the difference in decoders brings our trained code
ahead. However, as the SNR increases, both decoders start to
approach MAP, and the quality of the encoder dominates. De-
spite the differences, the neural codes were trained similarly.
This kind of variability seems common with neural codes. In
fact, an earlier attempt produced a worse code, and the key
distinguishing factor between it and the code in this paper was
the CE of the encoders. This suggests the random seed used
for training has a major impact on the encoder learned. We
also included BER measurements of our trained CNN encoder
with a junction tree decoder. As noted, the CNN decoder was
already close to MAP, so we do not see much improvement.
Outside of neural benchmarks, we compared against a memory
2 recursive systematic (RSC) code (Turbo-155-7). The RSC
variant outperforms all neural codes. This is likely because
iterative BCJR has better error-correcting capabilities when
one of the streams is systematic. However, upon replacing the
CNN decoder of TurboAE-Binary with a junction tree decoder,
we see they outperform the RSC. The dramatic improvement
is explained by the suboptimality of the fine-tuned decoders
as shown in Fig

V. CONCLUSION

In this work, we presented a feasible MAP decoder for
Turbo codes and used it to unravel the roles played by the

neural decoder and encoder during the optimization of DL-
ECCs. In equation , we decomposed BCE into an encoder-
specific term (CE) and a term that measures how close the
decoder is to MAP (KL). At input length & = 40, we
applied our MAP decoder to observe the evolution of this
decomposition during the training process. We discovered
a “zig-zag” pattern in the evolution of this decomposition:
learning happens in “spurts”, with sudden improvements in
the encoder, followed by quick adjustments of the decoder
to match the encoder. This work opens further questions
regarding why the alternating training scheme of [3] may be
better for optimization than other schemes (e.g. the decoupled
scheme from [8]]). In particular, when the neural encoder is
stuck in a saddle point, what properties do the nearby better
encoders have relative to the current saddle point? Work from
[17] suggests that the place to look may be in changes in
Fourier coefficients during these jumps. This decomposition
may also be useful in the future comparison of learned error-
correcting codes trained with BCE loss.
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