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Abstract—The KO (Kronecker Operation) code is a recent

deep-learned error-correcting code using a neural network archi-

tecture to generalize a Reed-Muller code with Dumer decoding.

Analyzing the encoder modules and using ablation techniques, we

give interpretations of the KO encoder which significantly reduce

the number of parameters. We also discuss interpretability as-

pects of the KO decoder. The interpretation opens up possibilities

to give an explicit representation of KO codes, which could be

useful for more efficient learning of KO codes and explaining the

learning mechanism underlying the empirical observations made

about its performance in previous work.

I. INTRODUCTION

Deep learning has been used recently to obtain error-
correcting codes, both for point-to-point AWGN channels
and for channels with feedback. Interpreting these codes is
discussed in several papers as a natural question raised by
the black-box nature of these codes [1], [2], which is also
relevant for the potential practical applicability. Interpretations
could be useful for generalizing the learned networks to other
parameters and to understand their relationship to known
codes. A systematic study of interpretability of deep-learned
error-correcting codes is initiated in [3]–[6].

The architecture of neural networks learning error-
correcting codes is often designed to reflect the encoder and
decoder structure of some known family of codes. For exam-
ple, [7]’s architecture mimics that of Turbo codes, and [2]’s
architecture that of Reed-Muller (RM) codes. This technique
of “neuralizing” the family can be viewed as trying to find
an optimal code in the space of codes “resembling” codes in
the family. The possibility of optimization by deep learning
thus provides new opportunities not only for constructing
new codes, but also for exploring properties of the spaces of
existing codes such as local optimality of a certain code.

The Reed-Muller (RM) code, discovered 70 years ago, is
among the most classical. A survey, including recent results
on achieving capacity on certain channels, is given by [8].
The deep-learned KO code of [2] is a neuralization of the RM
code, and it improves upon RM codes with Dumer decoding
both in terms of BER and BLER for second-order RM codes
of lengths 256 and 512. The number of parameters of the
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KO network was reduced by about half and its training was
accelerated in [9].

One explanation for the improvements given by KO codes
given by [2] is that being real-valued, they combine en-
coding and modulation (this holds for most deep-learned
codes for AWGN channels in general). They also show that
the distribution of pairwise distances (corresponding to the
weight distribution for linear codes) is quite similar to the
Gaussian codebook. Another interesting observation concerns
the unequal contribution of various branches to the BLER of
the Plotkin tree for RM. It is shown in [2] that KO achieves
an improvement of the balance.

In this paper, we further explore the interpretation of KO
codes. We focus on interpreting the encoder. We take a closer
look “under the hood” by analyzing the modules gi of the
KO(8, 2) encoder. The main result is that the encoder can
be simplified significantly. This result is obtained using two
different interpretation techniques.

The first approach is to analyze the modules, by simulat-
ing the KO network on a random sample and tracking the
activations produced. The technique as described applies to
second-order RM only, but it could possibly be extended to
higher orders as well. It turns out that the activations exhibit a
sharp clustering. This allows the replacement of the modules
by small lookup tables. The performance of the simplified
encoder paired with the learned decoder without any change
is very similar to the original network.

The second approach is an ablation technique replacing
modules in the lower layers with the original RM modules,
and keeping only the two top ones. The inputs to the remaining
modules are binary, and therefore these modules can also be re-
placed by small lookup tables. Pairing this simplified encoder
with the learned decoder without any change gives again a
very similar performance to the original network. Since the
inputs to functions gi are discrete, we can use a finite number
of constants to specify these functions. When the top two
functions are used, this would result in 12 constants. However,
as observed above, the support of the functions collapses,
and instead of 12, we just need 8 constants. Ultimately, this
network reduces the number of parameters in the encoder from
more than 13,000 to 8.

We also consider stitching or “Frankensteining” different
encoders and decoders [10], [11]. This technique was used
in previous work on interpreting deep-learned error-correcting



Fig. 1: (a) RM(8,2) Encoder (b) KO(8,2) construction using RM(8,2). The orange (order-2) and blue (order-1) nodes are Plotkin nodes. The
grey KO nodes add the trainable g̃ functions to the Plotkin nodes. order-1 nodes(blue) are considered leaves, as they can be MAP decoded.
(c) Interpretable KO(8,2) encoder. Replaces all the neuralized grey KO nodes in KO(8,2) with interpretable nodes - cKO (pink) or just plain
order-2 Reed Muller nodes (orange). (d) Look-up tables ĝ8, ĝ7 for the interpretable nodes cKO(8, 2), cKO(7, 2) respectively.

codes [3], [4] to draw conclusions about the relative im-
portance of learned encoders and decoders. The encoders
considered are RM, KO and the various interpretable encoders,
and the decoders are the Dumer [12], RPA [13] and KO
decoders. These experiments are used to evaluate the various
interpreted encoders and to make some observations about
decoder interpretabilty.

II. REED-MULLER (RM) CODES

Reed-Muller (RM) codes are a family of error-correcting
codes defined by two parameters: m, the size of the code, and
r, the order of the code. The parameters of the RM(m, r) code
determine the length, dimension, rate, and minimum distance
as follows: length n = 2m, dimension k =

Pr
i=0

�m
i

�
, rate

⇢ = k/n, minimum distance d = 2m�r.

A. RM Encoder
RM codes may be obtained using the recursive Plotkin

construction, with basic building block (u,u � v), where
u,v 2 {0, 1}`, � represents bit-wise XOR, and (·, ·) denotes
concatenation. This recursive process is used to construct
RM(m, r) codes using the relation:

RM(m, r) = {(u,u� v) :u 2 RM(m� 1, r),

v 2 RM(m� 1, r � 1)},

where RM(m, 0) represents a repetition code that repeats a
single information bit 2m times, and RM(m,m) is a full-
rate code with k = n = 2m. The result of this recursive

construction can be visualized as a computation tree as in
Fig. 1(a), referred to as a Plotkin tree, where each non-
leaf node corresponds to a Plotkin mapping, and the leaves
represent repetition or full-rate codes at various recursion
levels.

B. RM Decoder
RM codes support multiple decoding algorithms, with

Dumer’s recursive decoding [12], [14] being one of the
most efficient. This decoding process takes advantage of the
recursive structure defined by the Plotkin construction. At each
node RM(m, r) of the Plotkin tree, it obtains log-likelihood
ratios (LLRs) to decode that stage. It uses the LLRs first to re-
cursively decode the lower order branch RM(m�1, r�1), and
then uses the decoded codeword of that branch together with
the LLRs to decode the higher order branch RM(m� 1, r).

III. KO CODES

KO codes introduce a new family of error-correcting codes
by generalizing the recursive Plotkin construction used in
RM codes. These codes leverage deep learning to discover
nonlinear encoding and decoding mechanisms.

A. KO Encoder
The KO encoder builds upon the recursive Plotkin tree

structure of RM codes. While RM codes rely on linear Plotkin
mappings of the form (u, v) 7! (u, u � v), the KO encoder
adds a neural network component to u� v enabling nonlinear
transformations, see Fig. 1(b).



Fig. 2: Row 1 : Plots of g̃i : R⇥ {±1} �! R implemented by the Neural Nets of KO Encoder. The black points represent the probability
density of inputs seen by the g̃ functions during simulations with a large number of randomly generated inputs.
Row 2: Approximations ĝ of g̃’s obtained by reducing the clusters to (±1,±1), shown as green points, and replacing the neural nets(NN)
with a lookup table with four values/cluster representatives. Each NN is replaced by four constants.

For each RM(i, 2) node in the Plotkin tree, KO encoder
replaces it with KO(i, 2) node, in which the Plotkin operation
(u,v) 7�! (u,u � v) is replaced by its neuralized version
(u,v) 7�! (u, u · v + g̃i(u,v)) , where g̃i : R⇥{±1} �! R
is applied bitwise, and is implemented using a 4 layer fully
connected neural net, with hidden layers of size 32 each,
having 2241 learnable parameters. Since u 2 R, u � v in
Plotkin nodes is replaced with u ·v which are equivalent when
u, v 2 {±1}. Since all these functions are applied bitwise, KO
encoder maintains the same computational complexity as RM
encoders.

Thus across all the stages the KO encoder has a total of
13,446 learnable parameters. This enables KO codes to explore
a richer space of (possibly non-linear) encoders.

B. KO Decoder

The KO decoder’s architecture is based on Dumer’s re-
cursive decoder for Reed Muller codes, but it enhances the
Dumer decoder stages with neural nets to match the neural
net encoders of the KO encoder. Specifically corresponding to
each stage KO(i + 1, 2) of encoder it adds two neural nets
fi1 , fi2 in the Dumer’s decoder to generalize the decoding of
the RM(i, 1) and KO(i, 2) branch respectively.

The KO decoder retains the same O(n log n) decoding
complexity as Dumer’s decoder for RM codes.

It should be noted that our notation for the g̃,f̃ functions
differs from the one used for the KO(8,2) code in [2], and
mappings from one to the other can be read from table I.

C. Training

The neural net parameters ✓,� of the KO encoder g✓

and the KO decoder f� are trained end-to-end in a channel
autoencoder setup to minimize the average bitwise binary cross
entropy (BCE) which serves as a differentiable proxy for bit
error rate (BER). Training is done using samples generated
uniformly randomly for the inputs and from the appropriate

g̃8 g̃7 g̃6 g̃5 g̃4 g̃3

g̃1 g̃2 g̃3 g̃4 g̃5 g̃6

f̃71 , f̃72 f̃61 , f̃62 f̃51 , f̃52 f̃41 , f̃42 f̃31 , f̃32 f̃21 , f̃22

f̃1, f̃2 f̃3, f̃4 f̃5, f̃6 f̃7, f̃8 f̃9, f̃10 f̃11, f̃12

TABLE I: Change of notation from KO(8,2) code in [2]. Rows 1,3
(grey) contain the names used in this paper; rows 2,4 contain the
corresponding name used in [2].

normal distribution for the noise from the AWGN channel.
The loss function is:

L(✓,�) = EU⇠Fk
2

Z⇠Nn
0,�2

"
1

k

kX

i=1

BCE(Ui, f�(g✓(U) + Z)i)

#
.

By introducing nonlinear transformations, KO codes ex-
pand the design space of encoding and decoding, enabling
the possibility of richer codebooks like random Gaussian
codebooks, known for their optimality, while also remaining
computationally efficient to decode, unlike random codebooks.

IV. ENCODER INTERPRETATION

We proceed to open the black boxes of each of the neural
networks g̃ in the KO encoder in Fig. 1, providing an explicit
post-hoc interpretation of the learned encoding functions.

A. Visualizing the KO Encoder’s Neural Nets
The modules g̃3, g̃4, . . . g̃8 in the KO encoder compute

functions of the form R ⇥ {±1} �! R, since the second
input v is binary. Thus

g̃i(u, v) = 1{v=1} · g̃i(u, 1) + 1{v=�1} · g̃i(u,�1)

where 1{·} denotes indicator function for condition {·}.
Thus we can visualize g̃i as two one variable functions

g̃i(u,+1) and g̃i(u,�1) by fixing the input v to +1 and �1
respectively. This allows an easy 2D visualization of the g̃

functions. All the g̃8:3(u,±1) are plotted in Fig. 2, where each



g̃i is shown as two curves, blue and orange for g̃i(u,+1) and
g̃i(u,�1), respectively.

B. Relevant Regions to Interpret
The visualizations are based on a random sample of inputs

and the activations of the nodes for these inputs. We only need
to interpret the g̃’s on the activated parts rather than the entire
input domain, since only those points have been observed and
are hence relevant. This will become important in the next
subsection about approximation. Activated parts which have
been seen seen during simulations / training - are plotted as
black scatter points on the g̃(u,±1) curves in Fig. 2. It is
remarkable how well the supports are clustered for all of the
g̃’s, which makes them much easier to interpret, as we need
to interpret them only around the black clusters on the curves.

C. Approximations
Due to clustering observed above, as the first approximation

we replace the functions with a look up table containing same
function value for each cluster. Thus the mapping looks like
input ! cluster ! g̃(cluster). With this we essentially end up
with four input clusters for each g̃i(u, v) around (±1,±1) and
thus each g̃i is replaced by the four constants 2 g̃i(±1,±1).
We denote this resulting approximation as the corresponding
ĝi, i.e.

ĝi(u, v) := (u, v) 7�! g̃i(sign(u), sign(v))

We keep the decoder neural nets unmodified.
Even with this perhaps simplistic approximation of the

KO encoder, we get a code which is almost identical in
performance to the trained KO(8,2), see "KO(8,2) approx" in
Fig. 4. Thus, perhaps surprisingly, each neural net module g̃i

of more than 2,000 parameters can be interpreted as ĝi, which
in turn is just a lookup table of four constants.

D. Interpretations from Ablations
We further try to evaluate how much of the performance of

KO codes can be attributed to each stage from 3 . . . 8. To do
this we define ablations of KO(8,2) as following:

RM(8,2) + ã, b̃ . . . := RM(8,2) Encoder +Dumer Decoder

+ g̃a +f̃(a�1)1 , f̃(a�1)2

+ g̃b +f̃(b�1)1 , f̃(b�1)2

...

So under this definition KO(8,2) = RM(8,2) + 3̃, 4̃ . . . 8̃. We
evaluate the ablations in the sequence RM(8,2); RM(8,2) + 8̃;
RM(8,2) + 8̃, 7̃; · · · KO(8,2). We found that on this trajectory
from RM(8,2) to KO(8,2), there are only two significant jumps
in the code quality, first with RM(8,2) + 8̃ and another with
RM(8,2) + 8̃, 7̃, which matches the performance of KO(8,2).

This suggests that the rest of the stages 6̃ : 3̃ have no
significant impact on the performance of the KO(8,2) code.
This is further validated by the magnitude of the outputs of g̃
functions on the black clusters in Fig. 2. For g̃8, g̃7, the outputs
are comparable to u� v 2 {±1} to which they are added.

Fig. 3: Comparison of Distribution of Pairwise Distances of the
codewords with that for a Random Gaussian Codebook. Similar to
KO(8,2), RM(8,2) + 8̂, 7̂ gets close to a random gaussian codebook
like distribution, Even randomized RM(8,2) + 8̂, 7̂ get similar shape
but smaller mean distance.

However for g̃3:6 the outputs are almost insignificant com-
pared to ±1, rendering them of little importance. Thus for all
intents and purposes KO(8,2) is same as RM(8,2) + 8̃, 7̃.

This together with the approximation results from the pre-
vious subsection suggest that a further, and far more inter-
pretable encoder should exist in the form of RM(8,2) + 8̂, 7̂,
obtained by replacing g̃8, g̃7 in RM(8,2) + 8̃, 7̃ with their
interpretable versions ĝ8, ĝ7. RM(8,2) + 8̂ is exactly the same
as RM(8,2) + 8̃, because in this configuration, g̃8 only sees
(±1,±1) as inputs coming from the preceding stages. So it
always produces the same output as ĝ8.

We evaluated the performance of all these interpretable
versions as well, which can be seen in Fig. 4. Here we
indeed find that RM(8,2) + 8̂, 7̂ (green) is responsible for the
performance of KO codes, with RM(8,2) + 8̂ (magenta) as
a stepping stone on the trajectory from RM(8,2) (blue) to
KO(8,2) (grey). Thus we found very simple and completely
interpretable encoder for the KO(8,2) encoder. Fig. 1(c) shows
the interpretable encoder in RM(8,2) + 8̂, 7̂.

E. Pairwise Distance Distribution of Codewords

It is noted in [2] as an indication of the improved quality
of the KO code that the pairwise distance distribution of
its codewords closely matches the distribution for a Gaus-
sian codebook. The approximate encoder RM(8,2) + 8̂, 7̂
also produces a similar distance distribution, see Fig. 3. To
determine whether the precise values of the constants in
ĝ8, ĝ7 mattered, we also randomly picked these constants from
a standard normal distribution. Under random choices, the
pairwise distance distribution still has a similar shape, but
the distribution peaks before that of the KO encoder and the
approximations. As lower mean distances are associated with
worse codes, this again indicates that optimizing the BCE



Fig. 4: BER plots for KO codes and its approximations.

Fig. 5: Comparison of RM(8,2)+Dumer and KO(8,2) with (a)
RM(8,2) + RPA Decoding proposed in [13], and (b) Lower bound
on ML Decoding for RM(8,2). Plots for (a,b) taken from [13]. The
SNR range corresponds to the shaded region in Fig. 4.

appears to also yield larger mean pairwise distances. One could
then imagine training learned codes using some function of
their distance distribution - for e.g. maximizing mean squared
pairwise distance between the codewords

EU⇠Fk
2

V⇠Fk
2

kg✓(U)� g✓(V )k22

- as an alternative encoder training objective (decoders could
still be trained using BCE if an alternating encoder/decoder
training is used). However, initial experiments with this setup
for a smaller KO(4,2) code with ML Decoder did not yield
any codes better than RM(4,2), hence it is not enough to just
maximize the pairwise distances to get a good code, at least
for small block lengths.

V. DECODER INSIGHTS

Decoder interpretation is typically more difficult than en-
coder interpretation, especially since closed-form expressions
for ML decoders can only be computed in rare cases, and
are certainly not known for RM codes. We thus limit our
interpretation of the KO decoder to some observations, a
number of which simply restate what is known from the
literature.

We start with the original justification of KO codes from [2]:
the KO scheme (KO Encoder + KO Decoder) outperforms

the RM+Dumer scheme. Our experiments, shown in Fig. 5,
confirm this. Further, since the KO decoder uses a recursive
algorithm that mimics the Dumer decoder, the KO scheme is
computationally efficient.

On the other hand, KO scheme does not match the per-
formance of RM+ML (RM encoder + ML decoder) scheme.
Again, this is clearly shown in Fig. 5. While an efficient ML
decoder for RM is not known, it has been shown in [13] that
the RPA with list decoder approaches the ML performance for
RM(8,2). Fig. 5 shows the RPA decoder without list decoding,
which also approximates ML decoding in this setting.

While there are hypotheses about why the KO scheme out-
performs the RM+Dumer scheme (see Sec. IV-E), one wonders
whether the KO decoder, when paired with the RM encoder
(with the functions fi appropriately retrained), could provide
some benefit. It is not difficult to see that this is actually not the
case as the Dumer decoder is optimal once Dumer’s recursive
decoding scheme is adopted. Our experiments, where we tried
to train the KO decoder for the RM encoder, confirm this.

Finally, one wonders whether the KO decoder can be
explicitly constructed (and interpreted) similarly to the Dumer
decoder once the functions gi are known (as in our interpre-
tation). This turns out to be problematic due to the power
normalization employed by the KO encoder. The RM code-
words lie on a sphere by default because they are binary. The
KO encoder makes the codewords real, and pushes them off a
sphere so normalization is used to project them back. But this
normalization is codeword dependent and is thus difficult to
account for when trying to construct the KO decoder explicitly.

VI. CONCLUSIONS AND FUTURE WORK

We continued the interpretation of KO codes [2] by signif-
icantly simplifying the encoder and discussing possibilities to
interpret the decoder. As a result, we obtained an interpretable
modification of KO(8,2) encoder using just 8 constants.

An interesting question is whether the interpretations can
be used for more efficient learning of (second or higher-
order) KO codes. Another question raised by the interpretable
code is whether it can be represented in an analytically
tractable form, which then perhaps could be used to explain
experimentally observed properties of the KO code such as
its error-balancing property mentioned in the introduction and
the local (non)-optimality of RM(8,2). The interpretation also
suggests directions for further experiments, such as analyzing
influences and developing alternative neuralizations of Reed-
Muller codes. The analysis presented in this paper is limited to
the KO(8,2) code, and it remains to be seen how much these
methods and especially interpretations will carry over to other
KO code sizes, i.e. will these conclusions hold for KO(9,2)?
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