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Abstract—Arbiter-based Physically Unclonable Functions
(APUFs) utilize the variability in manufacturing to create distinct
digital identifiers for integrated circuits (ICs). Essentially, the
input-output functions / truth-tables / full set of “responses” to
“challenges”, serve as potential hardware security primitives.
To fulfill this role, every APUF batch from the same design
should exhibit specific features; two of the most important are
the response bias and uniqueness. A faulty APUF batch with a
µ-fault from the design phase fails to achieve desired uniqueness
levels and sometimes exhibits undesired response bias as well,
hence is unqualified for security purposes. Instead of discarding
such faulty APUFs and re-designing, we present a novel method
to salvage a faulty APUF batch with the presence of multiple
µ-faults, so that the desired uniqueness and bias are restored.
This is done by carefully selecting challenges that can mitigate
the impact of the faults. Such a salvaging strategy via challenge
selection is intrinsically difficult, due to the enormous size of the
challenge set, the black-box nature of APUFs, and the need to
perform such tasks efficiently. To overcome these problems, we
propose a simple yet effective way to estimate the intensity of
the multiple faults and use them to guide the challenge selection
process. The proposed method can efficiently find large challenge
sets that achieve the desired response bias and uniqueness, thus
salvaging a faulty APUF batch in the post-production phase.

Index Terms—arbiter PUF, arbiter PUF faults, fault repair

I. INTRODUCTION

PUFs are promising low-cost hardware security primitives
that exploit manufacturing randomness to generate unique
digital fingerprints for device authentication [1]–[3]. In an n-
stage Arbiter-PUF (APUF), n track pairs are designed to be
of equal delay, but due to manufacturing randomness, each
pair differs slightly in their delay values. A binary input, or
“challenge” c 2 {0, 1}n, decides which consecutive disjoint
delay track pairs are selected to form two racing paths that are
fed into an arbiter to produce the output, a binary “response”
R(c) 2 {±1}, which depends on which racing path arrives
first. Each manufactured APUF instance has a truth table that
consists of 2n challenge-response pairs (CRPs),

�
c, R(c)

�
that

is hopefully unbiased and unique. The APUF is a “strong”
PUF with CRPs exponential in the number of delay elements
and is a building block for more complex strong PUFs.

Prior work and motivation. To serve as a security primi-
tive, it is critical for APUF instances to meet desired specifi-
cations, two of which are especially important: response bias
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Fig. 1: The n-stage APUF with challenge bits ci selects the
parallel or crossed delay tracks to form two racing paths at
each stage i and the delay difference is �(ci)i . The response is
the sign of the final accumulated delay difference �n(c).

and uniqueness. APUFs suffer from stuck-at faults as well
as delay faults, which affect the response bias or uniqueness.
Some papers [4]–[9] have designed testing and diagnosing
methods for faulty APUFs. In general, those faulty APUFs
do not qualify as security primitives and will be discarded or
require re-design. In this paper, our focus is on an APUF-
native production-line fault caused by unbalanced designs
using Electronic Design Automation (EDA) tools, called the µ-
fault, and such APUFs are with poor uniqueness (or response
bias) [8], [9]. While testing and diagnosing methods are
available for µ-fault, repair strategies were not discussed.

Contribution. Instead of discarding these unqualified
APUFs, our work, for the first time, proposes to use chal-
lenge selection to mitigate the undesired fault impacts. One
straightforward way is to use challenges that do not select
the faulty delta element(s). However, such a challenge set
shrinks quickly as the number of faults increases, and might
not even exist. This paper presents a systematic challenge
selection-based salvaging strategy where faults “cancel” each
other, such that the response bias and uniqueness are as close
to ideal as possible. This is achieved based on a method to
estimate the intensity of each faulty element for an APUF
batch with many µ-faults, and the estimated result is valid
for salvaging APUFs generated from this µ-fault production
line. The presented strategies are low-cost (need only a small
number of APUF samples, no extra hardware), effective, and
applicable to multiple faults.

II. PRELIMINARIES

The n-stage APUF architecture is illustrated in Fig. 1, where
each stage i consists of “parallel” and “crossed” tracks of delay
delta elements. The input (or challenges) is a n-bit binary
vector c 2 {0, 1}n. The signal traverses via the challenge-
picked paths: the “parallel” tracks if ci = 0, or the “crossed”979-8-3315-2144-8/25/$31.00 ©2025 IEEE



tracks if ci = 1. The output (or response) is a binary bit
R(c) 2 {±1} produced by a race resolution arbiter, which
compares which of the two signals (red, blue) arrives first
after traversing through n stages in series. The response is
+1 (�1) if the lower (upper) entrance to the arbiter arrives
first. The response relies only on which signal arrives first, i.e.
it depends on the delay difference between a pair of selected
tracks at each stage i, denoted as delta elements, �(0)i (selected
if ci = 0) and �(1)i (selected if ci = 1), or �(ci)i for short.

The response R(c) can be represented as the sign of the
accumulated delay difference at the final stage, �n(c), as

R(c) = sign
�
�n(c)

�
2 {±1},

where �n(c) is computed recursively: for i 2 [1, n], �0 = 0,
and �i(c) = (�1)ci�i�1(c) + �(ci)i , where �i(c) is the
accumulated delay difference after stage i. By expanding the
recursive equation, �n(c) can also be represented as the
summation of delta elements (�s) with different signs:

�n(c) =
nX

i=1

s(0)i �(0)i +
nX

i=1

s(1)i �(1)i ,

where s(ci)i is the sign of �(ci)i is determined by c as in Table I.

ci Parity(ci+1 : cn) effect in �n s(0)i s(1)i

0 0 +�(0)i picked +1 0

0 1 ��(0)i picked �1 0

1 0 +�(1)i picked 0 +1

1 1 ��(1)i picked 0 �1

TABLE I: Sign determination for delta elements.

As the signs are determined by a given challenge, not all
3n sign cases are possible. For example, for stage i, one and
only one delta element (either �(0)i or �(1)i ) must be selected,
thus either s(0)i or s(1)i must be 0. Similarly, the following sign
constraints exist:

• (same-stage only one element) [s(0)i , s(1)i ] must be one of
{[0,�1], [�1, 0], [0, 1], [1, 0]}.

• (final-stage non-negative) s(cn)n 6= �1.
• (adjacent-stage correlation) if s(0)j+1 6= 0 and s(x)j 6= 0,

then s(x)j = s(0)j+1; if s(1)j+1 6= 0 and s(x)j 6= 0, then s(x)j 6=
s(1)j+1, where x 2 {0, 1}.

A. Metrics: response bias and uniqueness
We focus on two PUF metrics of great importance: the

response bias and the uniqueness [10], [11], defined as:
Definition 1 (response bias): Bias(A, C), of a set of PUFs,

A, taken over a set of challenges, C, is defined as

Bias(A, C) : = Prob [R(c) = +1] =
# of +1 in R(A, C)

|A|⇥ |C|
where R(A, C) are the responses of the PUFs in set A to the
challenges in set C. The response bias lies in the range [0, 1],
and is ideally 0.5.

Uniqueness is for hardware primitives with respect to au-
thentication, i.e. whether each PUF is distinguishable from

the others. We adopt a “modified” uniqueness from [9], which
corrects an error in a widely-used uniqueness:

Definition 2 (uniqueness): U(A, C) of PUFs A, over a set
of challenges, C, is U(A, C) := 1�2Dev where the deviation
from the ideal average pairwise PUF Hamming distance is

Dev :=
2

|A|(|A|� 1)

|A|�1X

i=1

|A|X

j=i+1

����
HD (Ri(C), Rj(C))

|C| � 0.5

���� ,

and HD (Ri(C), Rj(C)) is the Hamming distance between the
responses of PUF i and PUF j to a challenge set C. The
uniqueness lies in the range [0, 1]: 0 is worst and 1 is ideal.

B. Fault models
In [8], [9] it was shown a manufacturer should ideally aim

for every delta element in an APUF batch to follow the same
zero-mean Gaussian distribution: 8i 2 {1, · · · , n}, x 2 {0, 1}.
�(x)i ⇠ N (µ

�(x)
i

,�2
�(x)
i

) = N (0,�2). However, production
lines will inevitably deviate from this due to for example EDA
tool imbalance, leading to non-ideal bias and uniqueness:

Definition 3: (µ-fault) An APUF batch suffers from a µ-
fault if there exists a � element index, say, �(x)j , with non-zero
mean Gaussian distribution, i.e. for some K(x)

j 6= 0,

9j 2 {1, · · · , n}, x 2 {0, 1} : �(x)j ⇠ N (K(x)
j ,�2),

and K(x)
j is the fault intensity of the faulty delta element �(x)j .

We assume the number of stages, the fault count, and
the fault locations are known and obtained by the methods
in [8], [9], yielding fault list F and the following notation
for the sign of elements in this list: F = {f1, f2, ..., fm :
fj is a faulty element �(x)j }. However, the fault intensities are
not – finding the fault intensities is not addressed in [8], [9].

C. The big picture
The response matrix (with rows as APUF instances and

columns as the challenges) can be used to visualize the re-
sponse bias and uniqueness [9]. In Fig. 2 (top), three response
matrices illustrate an ideal production line and a µ-fault one
with a single faulty delta element �(x)j . The ideal case shows
the (ideal) random pattern. In contrast, the µ-fault scenario
exhibits a “striped” pattern, where some challenges yield
identical responses across APUFs generated from the same µ-
fault production line, reducing uniqueness. In authentication
protocols, an APUF claims its identity by responding to
random challenges. The server verifies its claim based on the
accuracy of the responses against a stored database. As shown
in Fig. 2 (middle), for APUFs from an ideal line, a threshold
(e.g., 0.8) allows clear distinction; however, APUFs from the
same faulty production line cannot be distinguished using
the same threshold1. This paper proposes a fault intensity-
based method to generate a salvaging challenge set, restoring

1Note: if APUFs are generated from different production lines (either ideal
or with µ-faults with varying fault intensities, the server can distinguish
APUFs, and no new threshold is needed.



Fig. 2: Authenticating APUFs generated from a µ-fault pro-
duction line requires a new threshold for random challenges;
but not for challenges generated from salvaging strategy.

ideal uniqueness for faulty APUFs without requiring new
authentication thresholds, as shown in Fig. 2 (bottom).

III. CANDIDATE SETS

In this section, we discuss how each individual delta element
affects the response bias, which helps us define the candidate
set that highlights the impact of specific delta elements on
response bias. Finally, we show that some candidate sets can
“salvage” faulty APUFs, i.e., under these challenges, these
faulty APUFs achieve ideal response bias and uniqueness.

The response bias is determined by the distribution of
the final accumulated delay difference �n(c), which can be
expressed as �n(c) ⇠ N (µD,�2

D), where

µD =
nX

i=1

⇣
s(0)i µ

�(0)i
+ s(1)i µ

�(1)i

⌘
, (1)

�2
D =

nX

i=1

⇣
|s(0)i |�2

�(0)i

+ |s(1)i |�2
�(1)i

⌘
,

and hence the response bias can be further represented as

Bias(A, C) = Prob [�n(c) > 0] = Q

✓
�µD

�D

◆
, (2)

where Q( t�µ
� ) = Prob[Y > t] for a random variable Y ⇠

N (µ,�2), where the Q(·) is the tail of the standard Gaussian
function (Q(x) :=

R1
x

1p
2⇡

e�t2/2dt) that satisfies Q(0) = 0.5

and Q( t�µ
� ) +Q(� t�µ

� ) = 1.
Achieving an ideal response bias requires µD = 0, which

depends on the delta elements’ mean and their signs. One
way to guarantee µD = 0 is to force all µ

�(x)
i

= 0, which
would result in a bias of 0.5 as Q(0) = 0.5. For example,
APUFs generated from an ideal production line satisfy this.

If APUFs are generated from a µ-fault production line, it
results in non-ideal bias when this bias is taken over some
challenges. The idea now is to select challenges which are un-
biased (where µD = 0). Since µD is a summation of s(ci)i µ

�
(ci)
i

terms, and µ
�
(ci)
i

are fixed, we start with grouping challenges

based on the sign (s(0)i , s(1)i ) of some delta elements, defined
as candidate set, such that the µD are known for each group,
as follows:

Definition 4: (candidate set) Given a delta set D with
m delta elements {d1, d2, ..., dm}, and a corresponding sign
vector s = [s1, s2, ..., sm] : sj 2 {0,±1}, j 2 [1,m]. A
candidate set C(D, s) contains all the challenges selecting each
delta element dj 2 D with sign sj :

c 2 C(D, s) () 8dj 2 D, sign(dj , c) = sj .

Note: The construction of a candidate set can be done via
the cases shown in Table I. If a sign vector s violates the
sign constraints imposed by the APUF architecture, then the
corresponding candidate set is necessarily empty (or does not
exist). Otherwise, we call the sign vector s “available”.

There are two particular candidate sets that deserve special
attention: 1) the “avoidance set” C(D,0) when s = [0, . . . , 0]
and none of the deltas in D are selected; and 2) the “target
set” C({�(x)i }, [±1]) which selects a single delta element with
a specific sign. Note that this was denoted as C(x)

j,± in [8], [9].

A. Faulty APUF in authentication
Many lightweight authentication protocols with strong PUFs

are explored [12]–[16]. In this paper, we consider the basic
authentication protocol in [17] and show how faulty APUFs
with poor uniqueness affect the authentication protocol design.

The authentication protocol employs two phases: a one-
time enrollment in a secure environment and the in-the-field
authentication where the information is vulnerable to attacks.
In the enrollment phase, the server collects arbitrary CRPs and
saves them in a database for future authentication.

In an authentication process, an APUF A claims its identity
as A to the server, and the server randomly selects a set of
challenges and sends them to A. APUF instance A calculates
the responses and returns them to the server. The server
compares the responses in the database with the received
CRPs and calculates the percentage that matches. The server
accepts A’s claim based on this percentage: if it exceeds some
threshold � 2 [0, 1], the server is convinced of A’s claim and
accepts it; otherwise, the server rejects it. For example, in
Fig. 3 (left), two APUFs, A and B, are generated from an
ideal 64-stage APUF production line, and both claim their
identity as A. The match percentages are shown for different
types of challenge sets. When A claims as A, the correct rate
is high; when B claims as A, the correct rate is significantly
smaller. It is easy to find a threshold �, e.g. 0.8, so the server
can distinguish APUF instance A from APUF instance B.

However, faulty APUFs generated from the same production
line have poor uniqueness, and their responses to some chal-
lenges are the same. In Fig. 3 (right), both APUFs are from the



Fig. 3: Histogram of correct rate over 100 runs for two 64-
stage APUFs (A and B) generated from the same ideal or
µ-fault production line, with 100 authentication challenges.

TABLE II: Average accept rate of two 64-stage APUFs (A and
B) under different thresholds. Both APUFs are generated from
the same µ-fault production line with F = {�(0)3 },K(0)

3 = 10.

threshold � 0.75 0.8 0.85 0.9
A as A with C(random) 1 1 1 0.99
B as A with C(random) 0.03 0.01 0 0
B as A with C(F , [1]) 0.78 0.48 0.15 0.02
B as A with C(F , [�1]) 0.80 0.49 0.2 0.03
B as A with C(F , [0]) 0 0 0 0

same µ-fault production line with fault intensity K(x)
j = 10.

The correct rate of challenges from the random set increases
when B claims as A. Specifically, the increase is related to the
challenges from the candidate sets of the faulty delta element.
Table II shows the accept rate under different thresholds and,
when � = 0.8, the accept rate of B claims as A with challenges
from C(F , [±1]) is around 0.5. This means the threshold
must be adjusted so the server can distinguish A from
B, and there could be a trade-off between the accept rate
and the reject rate.

IV. SALVAGING APUFS VIA CHALLENGE SELECTION

We showed that faulty APUFs have poor response bias and
uniqueness, and would fail authentication. We now present
how to salvage these faulty APUFs by challenge selection
such that the response bias and uniqueness are ideal within the
selected challenges and, hence can be used for authentication.

A. Intuitive solution: using the avoidance set C(F ,0)

The presence of abnormal delta elements is the root cause
of non-ideal response bias and uniqueness. One immediate
and intuitive approach to mitigating their impact is to select
challenges that “avoid” the faulty elements at all (i.e. s = 0).

1) Avoidance set with a single fault: In [8], [9], the authors
consider a single µ-fault on �(x)j and define the target and
avoidance sets. They show that avoidance set challenges (in-
stead of random sets) yield ideal response bias and uniqueness,
and hence this set can be used to salvage the APUFs.

2) Avoidance set with multiple faults: We now extend the
investigation from a single fault to multiple faults scenario.
We start with the fault impact of two µ-faults, as shown in
Fig. 4. The uniqueness for µ-faults decreases as the number
of faults increases. The test and diagnosis methodologies from
[9] are directly applied to the multiple-faults scenario.

Fig. 4: Fault impact on uniqueness for 100 64-stage APUFs
and 100 random challenges under different number of faults.

Next, we theoretically analyze the fault impact on response
bias. We start from an 8-stage APUF with a fault list F =
{�(0)3 , �(0)6 } (meaning �(0)3 and �(0)6 are faulty) and the fault
intensities are K(0)

3 = K(0)
6 = 5. Then, there are a total of 32

possible vectors of s (recalling that each si 2 {�1, 0,+1}),
from [�1,�1] all the way to [+1,+1], and each defines a can-
didate set presented in Table III. For example, C(F , [�1, 0])
contains all the challenges with s(0)3 = �1, s(0)6 = 0, and this
translates into selecting challenges c for which: a) the first
faulty element �(0)3 is picked with negative sign in �n, and b)
the second faulty element �(0)6 is NOT selected. The underlined
challenge bits correspond to the faulty delta elements at
locations 3 and 6. The mean of �n(c) can be derived as
µD = s(0)3 K(0)

3 +s(0)6 K(0)
6 , and there exist three candidate sets

with ideal bias and uniqueness namely with [s1, s2] equal to
[�1,+1], [0, 0], [+1,�1], indicated by a colored background.

s
(0)
3 s

(0)
6 bias uniq. µD example challenge |cµD|

-1 -1 0.00 0.00 -10 01000010 10.91
-1 0 0.04 0.13 -5 01000100 5.24
-1 +1 0.51 0.62 0 01010011 0.43
0 -1 0.02 0.07 -5 01110001 5.67
0 0 0.49 0.62 0 01110111 0.00
0 +1 0.94 0.21 +5 01110011 5.67

+1 -1 0.47 0.65 0 01010001 0.43
+1 0 0.97 0.12 +5 01010111 5.24
+1 +1 1.00 0.00 +10 01011000 10.91

TABLE III: Examples of candidate sets for 8-stage APUFs.

The response bias can be theoretically calculated based
on the mean of �n(c). For an n-stage APUF production
line which suffers two µ-faults, �(x1)

j1
⇠ N (K(x1)

j1
6= 0,�2)

and �(x2)
j2

⇠ N (K(x2)
j2

6= 0,�2)) (all other normal delta
elements �(ci)i ⇠ N (0,�2)), for challenges from a candidate
set C

⇣
[s(x1)

j1
, s(x2)

j2
]
⌘

, the µD, by linearity of expectation, is

µD = s(x1)
j1

K(x1)
j1

+ s(x2)
j2

K(x2)
j2

. The response bias over this
candidate set is Bias

⇣
A, C

⇣
[s(x1)

j1
, s(x2)

j2
]
⌘⌘

= Q
⇣

�µD

�D

⌘
,

where µD = s(x1)
j1

K(x1)
j1

+ s(x2)
j2

K(x2)
j2

and �D =
p
n�2. This

can be generalized to any number of faults.
In theory then, if we let s be all zeros, i.e. s(x)i = 0 for

all faults in F , then this is the avoidance set C(F ,0) which
yields ideal bias and uniqueness, as all faults are avoided.
However, as we show next, because of the sign constraints, the
avoidance set is not always available (i.e., it is an empty set)



[s
(0)
3 , s

(0)
4 ] bias uniq. µD example challenge

[�1,�1] 0.00 0.00 -10 01000001
[�1, 0] 0.04 0.16 -5 01010101
[�1,+1] / / / /
[ 0,�1] 0.04 0.17 -5 01100001
[ 0, 0] 0.48 0.72 0 01110101
[ 0,+1] 0.96 0.17 +5 01100101
[+1,�1] / / / /
[+1, 0] 0.96 0.15 +5 01011101
[+1,+1] 1.00 0.00 +10 01000101

(a) Two faults �(0)3 , �(0)4 at adjacent stages.
[s

(0)
3 , s

(0)
8 ] bias uniq. µD example challenge

[�1,�1] / / / /
[�1, 0] 0.04 0.17 -5 01000001
[�1,+1] 0.50 0.73 0 01000100
[ 0,�1] / / / /
[ 0, 0] 0.49 0.71 0 01100101
[ 0,+1] 0.96 0.14 +5 01100100
[+1,�1] / / / /
[+1, 0] 0.96 0.14 +5 01000101
[+1,+1] 1.00 0.00 +10 01001100

(b) Two faults �(0)3 , �(0)8 with one (�(0)8 ) at the final stage.

TABLE IV: Examples of two µ-faults at varying locations
where some candidate sets are empty (denoted by “/”).

or is not large enough as the number of faults increases.

B. The problem of the avoidance set C(F ,0)

Consider two-fault examples. If the designed signs at these
two faults violate the sign constraints in Table I, the corre-
sponding candidate set is empty or does not exist, e.g. when:

1) Two faults at the same stage: e.g. when �(0)i and �(1)i (i
not the final stage) are faulty, since one delta element must be
selected at each stage, either �(0)i or �(1)i is selected and hence
sign cases [0, 0], [±1,⌥1] are not available.

2) Two faults at adjacent stages: e.g. when �(0)3 and �(0)4

are abnormal, as shown in Table IVa, if �(0)4 is selected with
a non-zero sign s(0)4 , then the sign s(0)3 must equal to s(0)4 .
Hence, sign cases [�1,+1] and [+1,�1] are not available.

3) Two faults with one at the final stage: e.g. when �(0)3

and �(0)8 are abnormal as shown in Table IVb, since the sign
of a final-stage delta element must be positive, all sign cases
with the final stage of sign �1 are not available.

As an alternative, we present a general way to systematically
find challenges based on the fault intensity estimation method,
to construct a challenge set with close to ideal response bias
and uniqueness. This set can serve as a set for salvaging faulty
APUFs when the avoidance set is not available.

V. FAULT INTENSITY-BASED CHALLENGE SELECTION

Consider APUFs generated from a µ-fault production line
with an abnormal delta element list F . The goal is to find
a challenge set ideal for both response bias and uniqueness.
One brute-force approach is to directly evaluate the bias and
uniqueness of all possible candidate sets. This always works.
However, the number of candidate sets increases exponentially
in the number of faults. We notice, from Table III and IV,
that the candidate sets with ideal performance have µD =

0 (including the avoidance set). This is no coincidence: the
response bias may be expressed as in (2) and hence finding
candidate sets with µD = 0 as close to zero as possible will
be optimal. To do so in an efficient manner, notice that if the
fault intensities are known, then µD, expressed as a linear
combination of the signs and the means of delta elements
as in (1) is easily calculated for any candidate set. Hence,
candidate sets with µD = 0 can be found without a brute-force
approach IF the fault intensities of all abnormal delta elements
are known; we present a method for estimating these next.

A. Fault intensity estimation
To efficiently find sets whose |µD| ⇡ 0 in (1) (i.e. sets that

can salvage the PUFs), the fault intensities K(x)
i of the faulty

elements �(x)i 2 F need to be estimated. We propose a way to
estimate these directly. This may be done in a clever manner
again using (1) and (2): since the response bias is a Q-function
of the unknown µD and the Q-function is invertible through
direct look-up (very accurate tables are available), for different
challenge sets, we can estimate µD for a challenge set C as:

cµD(C) =
X

(i,x)2F

s(x)i K(x)
i ⇡ �Q�1 (Bias(A, C)⇥ �D) .

If the abnormal delta list F is of size m then we have m
unknown fault intensities to estimate, which may be done by
inverting an m⇥m system of linear equations. This invertible
system of linear equations needs to be constructed based on
candidate sets and the sign cases they correspond to: each
candidate set corresponds to a specific choice of signs for
the faulty elements, represented as a length m vector s 2
{�1, 0, 1}m. We thus need to find m candidate sets chosen
with corresponding sign cases {s1, s2, . . . , sm} to ensure that
the matrix S := [s1, s2, . . . , sm] is invertible and solve:

S|{z}
known by selection

·

2

664

K1

K2

...
Km

3

775

| {z }
unknown

⇡

2

6664

�Q�1 (Bias(A, C(s1))�D)
�Q�1 (Bias(A, C(s2))�D)

...
�Q�1 (Bias(A, C(sm))�D)

3

7775

| {z }
obtained from querying the APUF

=) S ·K ⇡ Q

where the S is the sign case matrix (dimension m⇥m which
is a matrix with entries of {�1, 0,+1}, K is the fault intensity
vector of dimension m⇥ 1, and Q is the estimated µD vector
of dimension m ⇥ 1. If there exists an invertible sign matrix
Sp, the fault intensities can be estimated as:

bK ⇡ S�1
p Q.

1) Example: Consider the example in Table III, where
100 APUFs and 16 challenges are used for fault intensity
estimation. The first step is to find an invertible sign matrix; the
identity matrix is always a great starting point. We calculate
the response bias for challenges selected from candidate sets
with sign cases [+1, 0] and [0,+1]. By using bK ⇡ S�1

p Q, the
estimated fault intensities are [5.24, 5.67].



2) Discussion: (a) The invertible sign matrix can be found
using various approaches. We suggest first checking whether
all sign cases in the identity matrix are available; if so
the estimation result is ideal. (b) The µD is estimated by
the inverse of the Q-function. Note that for |µD| greater
than 30 (the fault mean is 30 times its variance, quite an
outlier!), the gradient of the Q-function tends to be zero which
leads to inaccurate bµD estimation. (c) When only one APUF
instance is available, the fault intensity estimation requires
more challenges to achieve a small error rate.

3) Finding an invertible sign case matrix: Finding one Sp

may be accomplished using a simple search or by randomly
trying different possibilities. The only fault pattern for which
such an invertible sign matrix does not exist is when there
are two same-stage faults occurring at adjacent stages. From
Monte Carlo simulations in a 64-stage APUF and average
over 100000 runs (in each run, 10000 attempts are made to
find a proper sign matrix), the probability of finding a proper
sign matrix for different randomly placed fault locations is
essentially 1. If the number of faults is less than 10, the success
rate is 1.0 and we will be able to estimate the fault intensities.

B. Salvaging faulty APUFs: finding the optimal salvaging set

The avoidance set is always preferred if this is a valid
set of signs given the fault locations; this corresponds to
s = {0}m (recalling that |F| = m). This is the best set to
use if it is available and large enough; otherwise, we suggest
an ordered list of “salvaging sets” which are candidate sets
ordered from smallest |µD| to largest. Once the fault intensities
are estimated, it is trivial to calculate all possible µD.

To create the salvaging set of a desired size, select the
avoidance set and then proceed to add more and more chal-
lenges to the salvaging set from the candidate sets, starting
with the set with the smallest |µD| and so forth. Consider the
previous example in which the estimated fault intensities are
[5.24, 5.67]. The |bµD| are known for the candidate sets of all
sign cases, as shown in Table III. The challenges are selected
by first picking the set with sign case [0, 0] (the avoidance set).
If more challenges are needed, then proceed to the candidate
set with the next smallest |bµD|, etc. Note: once the salvaging
set is found, it is applicable to salvage all APUFs generated
from this faulty µ-fault production line.

VI. SIMULATION RESULTS

Next, we show how to apply the challenge selection-based
salvaging method on µ-fault APUF production line faults. We
assume multiple faults at locations in F , and each fault leads
to �(x)i ⇠ N (K(x)

i ,�2) rather than the desired N (0,�2).
Such µ-faults have a great impact on the response bias and
uniqueness but are also relatively easy to salvage in the sense
that the abnormal delta elements of APUF instances have
similar values and hence can be salvaged by the same set
of challenges. That is – all µ-faults from one faulty APUF
batch can be salvaged by the same set of challenges, which
is highly beneficial from a practical engineering perspective

Fig. 5: Histograms of correct rate over 100 runs for two 64-
stage APUFs (A and B) generated from the same µ-fault
production lines, with 100 authentication challenges.

Ks 5 10 [5,-10, 10, 5] U(2,10)
bias 0.5 ! 0.5 0.5 ! 0.5 0.5 ! 0.5 0.5 ! 0.48
uniq. 0.71 ! 0.91 0.45 ! 0.91 0.53 ! 0.91 0.68 ! 0.91

TABLE V: The response bias and uniqueness under random
challenges and proposed salvaging set (bold) for 64-stage
APUFs with four faults and different fault intensities Ks.

– that whole batch needs to use different challenges from
the salvaging set in the protocols.

The Python simulation results of 100 64-stage faulty APUFs
generated from µ-fault production lines, with 4 randomly
picked faults are shown in Table V. The fault intensities of
abnormal delta elements are fixed to 5 or 10, or randomly
generated from a uniform distribution between 2 and 10.
The number of challenges for the fault intensity estimation
procedure and for salvaging are 100 and 10000, respectively.
To evaluate the performance of challenges from the non-zero
sign candidate sets, we skip the avoidance set2. The bias and
uniqueness over 10000 challenges from a random challenge set
and a salvaging set with |cµD| < 1 are given. The result shows
that regardless of the fault locations, faulty APUFs perform
ideally within the salvaging set, i.e. the response bias and
uniqueness are close to the ideal, 0.5 and 1.0 respectively,
and significantly outperform the random challenge sets usually
used in APUF authentication protocols, as shown in Fig. 5.

VII. CONCLUSION

APUFs generated from APUF production lines with µ-
faults have non-ideal response bias and uniqueness and are
unqualified for authentication purposes. The root cause of
faults is the abnormal delta elements. Choosing challenges
that avoid these faults (i.e. from the avoidance set) yields ideal
bias and uniqueness. However, the avoidance set is not always
available for multiple faults, and its size shrinks as the number
of faults increases. As an alternative, we have designed a low-
cost, efficient fault intensity-based challenge selection method,
for µ-fault affected APUFs without requiring extra hardware.
Our method results in creating optimal sets of challenges that
will yield close to ideal response bias and uniqueness.

2Often, challenges are selected from candidate sets with two non-zero signs
rather than one non-zero sign as two can balance out, whereas one must be
below the threshold to be selected.
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